Musings on Digital Identity

Category: Cryptography Page 2 of 10

COSE and JOSE Registrations for Web Authentication (WebAuthn) Algorithms is now RFC 8812

IETF logoThe W3C Web Authentication (WebAuthn) working group and the IETF COSE working group created “CBOR Object Signing and Encryption (COSE) and JSON Object Signing and Encryption (JOSE) Registrations for Web Authentication (WebAuthn) Algorithms” to make some algorithms and elliptic curves used by WebAuthn and FIDO2 officially part of COSE and JOSE. The RSA algorithms are used by TPMs. The “secp256k1” curve registered (a.k.a., the Bitcoin curve) is also used in some decentralized identity applications. The completed specification has now been published as RFC 8812.

As described when the registrations recently occurred, the algorithms registered are:

  • RS256 — RSASSA-PKCS1-v1_5 using SHA-256 — new for COSE
  • RS384 — RSASSA-PKCS1-v1_5 using SHA-384 — new for COSE
  • RS512 — RSASSA-PKCS1-v1_5 using SHA-512 — new for COSE
  • RS1 — RSASSA-PKCS1-v1_5 using SHA-1 — new for COSE
  • ES256K — ECDSA using secp256k1 curve and SHA-256 — new for COSE and JOSE

The elliptic curves registered are:

  • secp256k1 — SECG secp256k1 curve — new for COSE and JOSE

See them in the IANA COSE Registry and the IANA JOSE Registry.

Registrations for all WebAuthn algorithm identifiers completed

IETF logoWe wrote the specification COSE and JOSE Registrations for WebAuthn Algorithms to create and register COSE and JOSE algorithm and elliptic curve identifiers for algorithms used by WebAuthn and CTAP2 that didn’t yet exist. I’m happy to report that all these registrations are now complete and the specification has progressed to the RFC Editor. Thanks to the COSE working group for supporting this work.

Search for WebAuthn in the IANA COSE Registry and the IANA JOSE Registry to see the registrations. These are now stable and can be used by applications, both in the WebAuthn/FIDO2 space and for other application areas, including decentralized identity (where the secp256k1 “bitcoin curve” is in widespread use).

The algorithms registered are:

  • RS256 — RSASSA-PKCS1-v1_5 using SHA-256 — new for COSE
  • RS384 — RSASSA-PKCS1-v1_5 using SHA-384 — new for COSE
  • RS512 — RSASSA-PKCS1-v1_5 using SHA-512 — new for COSE
  • RS1 — RSASSA-PKCS1-v1_5 using SHA-1 — new for COSE
  • ES256K — ECDSA using secp256k1 curve and SHA-256 — new for COSE and JOSE

The elliptic curves registered are:

  • secp256k1 — SECG secp256k1 curve — new for COSE and JOSE

secp256k1 curve and algorithm registered for JOSE use

IETF logoIANA has registered the “secp256k1” elliptic curve in the JSON Web Key Elliptic Curve registry and the corresponding “ES256K” signing algorithm in the JSON Web Signature and Encryption Algorithms registry. This curve is widely used among blockchain and decentralized identity implementations.

The registrations were specified by the COSE and JOSE Registrations for WebAuthn Algorithms specification, which was created by the W3C Web Authentication working group and the IETF COSE working group because WebAuthn also allows the use of secp256k1. This specification is now in IETF Last Call. The corresponding COSE registrations will occur after the specification becomes an RFC.

Nearing completion on two WebAuthn-related specs at the IETF

IETF logoThis week we published updates to two IETF specifications that support the WebAuthn/FIDO2 ecosystem, as well as other uses, such as decentralized identity.

One is COSE and JOSE Registrations for WebAuthn Algorithms. It registers algorithm and elliptic curve identifiers for algorithms used by WebAuthn and FIDO2. The “secp256k1” curve being registered is also used for signing in some decentralized identity applications. The specification has completed the Area Director review and has been submitted to the IESG for publication.

The other is Registries for Web Authentication (WebAuthn). This creates IANA registries enabling multiple kinds of extensions to W3C Web Authentication (WebAuthn) implementations to be registered. This specification has completed IETF last call and is scheduled for review by the IESG.

Thanks to the COSE working group for their adoption of the algorithms specification, and to Ivaylo Petrov and Murray Kucherawy for their reviews of it. Thanks to Kathleen Moriarty and Benjamin Kaduk for their Area Director sponsorships of the registries specification and to Jeff Hodges for being primary author of it.

The specifications are available at:

Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs) is now RFC 8747

IETF logoI’m pleased to report that Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs) is now RFC 8747. The abstract of the specification is:

This specification describes how to declare in a CBOR Web Token (CWT) (which is defined by RFC 8392) that the presenter of the CWT possesses a particular proof-of-possession key. Being able to prove possession of a key is also sometimes described as being the holder-of-key. This specification provides equivalent functionality to “Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs)” (RFC 7800) but using Concise Binary Object Representation (CBOR) and CWTs rather than JavaScript Object Notation (JSON) and JSON Web Tokens (JWTs).

This is one of a series of specifications, including CWT [RFC 8392] — which mirrors JWT [RFC 7519], in which we are intentionally bringing functionality that is available in JSON to the CBOR and IoT world.

Two New OAuth RFCs: MTLS (RFC 8705) and Resource Indicators (RFC 8707)

OAuth logoTwo widely used OAuth specifications have recently become RFCs. Here’s a bit about both specs.

RFC 8705: OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access Tokens

Abstract: This document describes OAuth client authentication and certificate-bound access and refresh tokens using mutual Transport Layer Security (TLS) authentication with X.509 certificates. OAuth clients are provided a mechanism for authentication to the authorization server using mutual TLS, based on either self-signed certificates or public key infrastructure (PKI). OAuth authorization servers are provided a mechanism for binding access tokens to a client’s mutual-TLS certificate, and OAuth protected resources are provided a method for ensuring that such an access token presented to it was issued to the client presenting the token.

Client certificates are widely used in the financial industry to authenticate OAuth clients. Indeed, this specification was developed in part because it was needed by the OpenID Financial-Grade API (FAPI) specifications. It is in production use by numerous Open Banking deployments today.

RFC 8707: Resource Indicators for OAuth 2.0

Abstract: This document specifies an extension to the OAuth 2.0 Authorization Framework defining request parameters that enable a client to explicitly signal to an authorization server about the identity of the protected resource(s) to which it is requesting access.

This specification standardizes the “resource” request parameter that is used by Azure Active Directory (AAD) V1 to specify the target resource for an OAuth authorization request.

JSON Web Token Best Current Practices is now RFC 8725 and BCP 225

OAuth logoThe JSON Web Token Best Current Practices specification is now RFC 8725 and BCP 225. The abstract of the specification is:

JSON Web Tokens, also known as JWTs, are URL-safe JSON-based security tokens that contain a set of claims that can be signed and/or encrypted. JWTs are being widely used and deployed as a simple security token format in numerous protocols and applications, both in the area of digital identity and in other application areas. This Best Current Practices document updates RFC 7519 to provide actionable guidance leading to secure implementation and deployment of JWTs.

The JSON Web Token (JWT) specification [RFC 7519] was approved in May 2015, almost five years ago, and has been in production use since at least 2013. This Best Current Practices specification contains a compendium of lessons learned from real JWT deployments and implementations over that period. It describes pitfalls and how to avoid them as well as new recommended practices that enable proactively avoiding problems that could otherwise arise. Importantly, the BCP introduces no breaking changes to the JWT specification and does not require changes to existing deployments.

The BCP came about as JWTs were starting to be used in new families of protocols and applications, both in the IETF and by others. For instance, JWTs are being used by the IETF STIR working group to enable verification of the calling party’s authorization to use a particular telephone number for an incoming call, providing verified Caller ID to help combat fraudulent and unwanted telephone calls. The advice in the BCP can be used by new JWT profiles and applications to take advantage of what’s been learned since we created the JSON Web Token (JWT) specification over a half decade ago.

COSE and JOSE Registrations for WebAuthn Algorithms spec adding explanatory comments on design decisions

IETF logoThe “COSE and JOSE Registrations for WebAuthn Algorithms” specification has been updated to add explanatory comments on design decisions made that were discussed on the mailing list that Jim Schaad requested be added to the draft.

The specification is available at:

An HTML-formatted version is also available at:

Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs) sent to the RFC Editor

OAuth logoI’m pleased to report that the Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs) specification is now technically stable and will shortly be an RFC — an Internet standard. Specifically, it has now progressed to the RFC Editor queue, meaning that the only remaining step before finalization is editorial due diligence. Thus, implementations can now utilize the draft specification with confidence that that breaking changes will not occur as it is finalized.

The abstract of the specification is:

This specification describes how to declare in a CBOR Web Token (CWT) (which is defined by RFC 8392) that the presenter of the CWT possesses a particular proof-of-possession key. Being able to prove possession of a key is also sometimes described as being the holder-of-key. This specification provides equivalent functionality to “Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs)” (RFC 7800) but using Concise Binary Object Representation (CBOR) and CWTs rather than JavaScript Object Notation (JSON) and JSON Web Tokens (JWTs).

Thanks to the ACE working group for completing this important specification.

The specification is available at:

An HTML-formatted version is also available at:

COSE and JOSE Registrations for WebAuthn Algorithms spec addressing WGLC comments

IETF logoThe “COSE and JOSE Registrations for WebAuthn Algorithms” specification has been updated to address working group last call (WGLC) feedback received. Thanks to J.C. Jones, Kevin Jacobs, Jim Schaad, Neil Madden, and Benjamin Kaduk for their useful reviews.

The specification is available at:

An HTML-formatted version is also available at:

JSON Web Token Best Current Practices sent to the RFC Editor

OAuth logoI’m pleased to report that the JSON Web Token (JWT) Best Current Practices (BCP) specification is now technically stable and will shortly be an RFC — an Internet standard. Specifically, it has now progressed to the RFC Editor queue, meaning that the only remaining step before finalization is editorial due diligence. Thus, implementations can now utilize the draft specification with confidence that that breaking changes will not occur as it is finalized.

The abstract of the specification is:

JSON Web Tokens, also known as JWTs, are URL-safe JSON-based security tokens that contain a set of claims that can be signed and/or encrypted. JWTs are being widely used and deployed as a simple security token format in numerous protocols and applications, both in the area of digital identity, and in other application areas. The goal of this Best Current Practices document is to provide actionable guidance leading to secure implementation and deployment of JWTs.

Thanks to the OAuth working group for completing this important specification.

The specification is available at:

An HTML-formatted version is also available at:

Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs) spec addressing Gen-ART and SecDir reviews

IETF logoA new version of the Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs) specification has been published addressing the Gen-ART and SecDir review comments. Thanks to Christer Holmberg and Yoav Nir, respectively, for these useful reviews.

The specification is available at:

An HTML-formatted version is also available at:

Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs) spec addressing remaining Area Director comments

IETF logoA new version of the Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs) specification has been published to address the remaining Area Director review comments by Benjamin Kaduk. Thanks to Ludwig Seitz for doing the bulk of the editing for this version.

The specification is available at:

An HTML-formatted version is also available at:

Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs) spec addressing Area Director review comments

IETF logoThe Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs) specification has been updated to address the Area Director review comments by Benjamin Kaduk. Thanks to Ludwig Seitz and Hannes Tschofenig for their work on resolving the issues raised.

The specification is available at:

An HTML-formatted version is also available at:

Refinements to COSE and JOSE Registrations for WebAuthn Algorithms

IETF logoThe “COSE and JOSE Registrations for WebAuthn Algorithms” specification has been updated to address feedback received since working group adoption. The one breaking change is changing the secp256k1 curve identifier for JOSE from “P-256K” to “secp256k1“, for reasons described by John Mattsson. The draft now also specifies that the SHA-256 hash function is to be used with “ES256K” signatures – a clarification due to Matt Palmer.

The specification is available at:

An HTML-formatted version is also available at:

Working group adoption of “COSE and JOSE Registrations for WebAuthn Algorithms”

IETF logoI’m pleased to report that the IETF COSE Working Group has adopted the specification “COSE and JOSE Registrations for WebAuthn Algorithms”. An abstract of what it does is:

This specification defines how to use several algorithms with COSE [RFC8152] that are used by implementations of the W3C Web Authentication (WebAuthn) [WebAuthn] and FIDO2 Client to Authenticator Protocol (CTAP) [CTAP] specifications. These algorithms are to be registered in the IANA “COSE Algorithms” registry [IANA.COSE.Algorithms] and also in the IANA “JSON Web Signature and Encryption Algorithms” registry [IANA.JOSE.Algorithms], when not already registered there.

The algorithms registered are RSASSA-PKCS1-v1_5 with four different hash functions and signing with the secp256k1 curve. Note that there was consensus in the working group meeting not to work on registrations for the Elliptic Curve Direct Anonymous Attestation (ECDAA) algorithms “ED256” and “ED512“, both because of issues that have been raised with them and because they are not in widespread use.

The -01 version will address the review comments received on the mailing list from Jim Schaad and John Mattsson.

The specification is available at:

An HTML-formatted version is also available at:

Additional COSE algorithms used by W3C Web Authentication (WebAuthn)

IETF logoThe new COSE working group charter includes this deliverable:

4. Define the algorithms needed for W3C Web Authentication for COSE using draft-jones-webauthn-cose-algorithms and draft-jones-webauthn-secp256k1 as a starting point (Informational).

I have written draft-jones-cose-additional-algorithms, which combines these starting points into a single draft, which registers these algorithms in the IANA COSE registries. When not already registered, this draft also registers these algorithms for use with JOSE in the IANA JOSE registries. I believe that this draft is ready for working group adoption to satisfy this deliverable.

The specification is available at:

An HTML-formatted version is also available at:

FIDO2 Client to Authenticator Protocol (CTAP) standard published

FIDO logoI’m thrilled to report that the FIDO2 Client to Authenticator Protocol (CTAP) is now a published FIDO Alliance standard! Together with the now-standard Web Authentication (WebAuthn) specification, this completes standardization of the APIs and protocols needed to enable password-less logins on the Web, on PCs, and on and mobile devices. This is a huge step forward for online security, privacy, and convenience!

The FIDO2 CTAP standard is available in HTML and PDF versions at these locations:

The W3C Web Authentication (WebAuthn) specification is now a standard!

W3C logoI’m thrilled to report that the Web Authentication (WebAuthn) specification is now a W3C standard! See the W3C press release describing this major advance in Web security and convenience, which enables logging in without passwords. Alex Simons, Microsoft Vice President of Identity Program Management is quoted in the release, saying:

“Our work with W3C and FIDO Alliance, and contributions to FIDO2 standards have been a critical piece of Microsoft’s commitment to a world without passwords, which started in 2015. Today, Windows 10 with Microsoft Edge fully supports the WebAuthn standard and millions of users can log in to their Microsoft account without using a password.”

The release also describes commitments to the standard by Google, Mozilla, and Apple, among others. Thanks to all who worked on the standard and who built implementations as we developed the standard — ensuring that that the standard can be used for a broad set of use cases, including password-less sign-in with platform authenticators, mobile devices, and security keys.

Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs) spec fixing nits

IETF logoThe Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs) specification has been updated to address issues identified by Roman Danyliw while writing his shepherd review. Thanks to Samuel Erdtman for fixing an incorrect example.

The specification is available at:

An HTML-formatted version is also available at:

Page 2 of 10

Powered by WordPress & Theme by Anders Norén