
What does Presentation 
Exchange do and what parts of 

it do we actually need?

Mike Jones

OSW August 2023 London – Unconference Discussion



Background

• Presentation Exchange (PE) is a Swiss Army Knife of a specification
• It can do many things supporting many different use cases

• OpenID for Verifiable Presentations uses it
• https://openid.bitbucket.io/connect/openid-4-verifiable-presentations-1_0.html

• High Assurance Interoperability Profile requires a subset of PE
• https://vcstuff.github.io/oid4vc-haip-sd-jwt-vc/draft-oid4vc-haip-sd-jwt-vc.html

• See the Presentation Exchange spec at
• https://identity.foundation/presentation-exchange/spec/v2.0.0/

https://openid.bitbucket.io/connect/openid-4-verifiable-presentations-1_0.html
https://vcstuff.github.io/oid4vc-haip-sd-jwt-vc/draft-oid4vc-haip-sd-jwt-vc.html
https://identity.foundation/presentation-exchange/spec/v2.0.0/


Let’s create a feature inventory together

Presentation Exchange Feature Description Feature Name HAIP

Request claims in presentation constraints/fields/path yes

Request claims within nested structures path w/ JSONPath yes

Request minimal disclosure limit_disclosure yes

Request presentation format format yes

Request proof type format/proof_type no

Request multiple presentations input_descriptors array yes

Specify multiple choices from groups (3 of A and 2 of B or 1 of C) submission_requirements parts

Regular expressions filter/pattern no

Abstract query syntax across credential formats (PE design assumption) implicitly

Response contains inventory of multiple presentations presentation_submission/
descriptor_map

yes



Notes from Wednesday Unconference Session

Brian: What use is the presentation_submission? You have to validate the received credentials anyway.

 Someone observed that the descriptor_map can let you inventory what you received without looking 
inside the credentials.

 Brian worried that developers could accept the map at face value and not validate the credentials.

Mike: Failures become opaque if the application just receives a "failed" error without saying what is missing

 Couldn't we just ask for one credential at a time?

Kristina: We can request multiple presentations without using presentation_requirements just using an array.

Justin: Aren't you creating privacy-destroying oracle if you return detailed error information?

 Isn't the wallet in a better position to give actionable error information than the application?

 We can't assume good intentions in a query language.

Mike: We'll have a follow-up session tomorrow.



Which functionality do we need & why?
Presentation Exchange Feature Description Feature Name Functionality Needed & Why?

Request claims in presentation constraints/fields/path Yes – data minimization for verifier & 
privacy for end-user

Request claims within nested structures path w/ JSONPath Yes, for credentialSubject claims

Request minimal disclosure limit_disclosure Selective disclosure yes

Request presentation format format Requesting credentials in formats useful

Request proof type format/proof_type Negotiating algorithms needed – could be 
done with metadata

Request multiple presentations input_descriptors array Combined requests can have better UX or 
it can be worse

Specify multiple choices from groups (3 of A 
and 2 of B or 1 of C)

submission_requirements Some use cases described

Regular expressions filter/pattern No: Needs to be blocked for security

Abstract query syntax across credential formats (PE design assumption) Alternative is format-specific query langs

Response contains inventory of multiple 
presentations

presentation_submission/
descriptor_map

(Brian questioned this on Wednesday)



Notes from Thursday Unconference Session (1 of 2)
Daniel: JSONPath should instead be JSON Pointer
Daniel: Can PE ask for everything in a structure or do you have to always request individual claims?
 How does that interact with limit_disclosure?
Yaron: Thinks it's useful to have the query language be format agnostic
 There will be multiple competing credential formats
 Mike: Credential formats are not self-describing
Brian: You have to understand a credential format to look inside of it
Daniel: You believe the issuer's statements about the credential format
Kristina: proof_type only makes sense for Linked Data Proofs
 Algorithms are separate
Mike: In OpenID and OAuth, we tend to do algorithm negotiation in metadata
 *_signing_algs_supported, etc.
Brian: The issuer's algorithm and the presentation algorithm are different
Brian: Supported credential formats could be in metadata, rather than the query language
Kristina: You could also pre-agree to supported features and simply pass short feature set handles
Brian: Is there a way to indicate which issuers you're willing to accept credentials from?
 Kristina: Yes - constraints on issuer values, for example - not just claims
Kristina: How you express issuer depends upon the credential format
 mDOCs express the issuer with the issuer certificate
Kristina: Being able to specify the issuer important



Notes from Thursday Unconference Session (2 of 2)
Mike: Do we need to be able to ask for multiple things at once or can we ask for things in different requests?
Kristina: Multiple consents or QR code scans result in a really bad user experience
Brian: Combined requests can have better UX or can have worse UX - especially in error cases
Kristina: We could imagine requesting multiple credentials and returning them one-by-one
 That could make the error conditions clearer
Kristina: Selecting one of mDL or another format useful
Kristina: Combinations of credential type and formats could be useful
Mark: Achieving a level assurance could require one strong or two medium
Mark: Transformed claims is a missing feature
 Brian: You can’t transform signed data
Kristina: Regular expressions need to be blocked for security reasons
Mike: We may need format-specific query languages under some circumstances
 For instance, for binary formats with binary claim names
 Some format-specific query languages already exist


	Slide 1: What does Presentation Exchange do and what parts of it do we actually need?
	Slide 2: Background
	Slide 3: Let’s create a feature inventory together
	Slide 4: Notes from Wednesday Unconference Session
	Slide 5: Which functionality do we need & why?
	Slide 6: Notes from Thursday Unconference Session (1 of 2)
	Slide 7: Notes from Thursday Unconference Session (2 of 2)

