Current Work and Future Trends in Selective Disclosure

Thursday, May 11, 2023

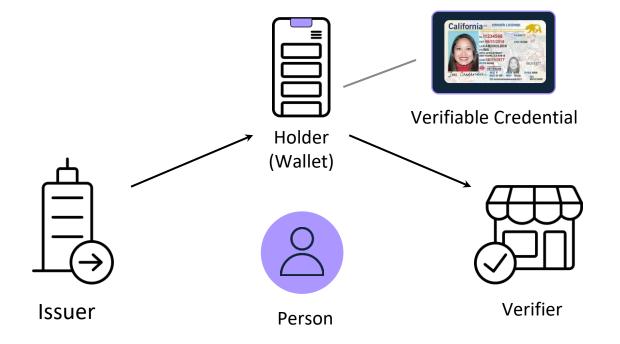
Agenda

Mike Jones – Introductory remarks

Daniel Fett – **SD-JWT**

Kristina Yasuda – ISO mdoc

Tobias Looker – Zero-Knowledge Proofs and BBS


David Waite – JSON Web Proofs and JOSE

All – Closing Remarks and Discussion

Selective Disclosure

- A lot of foundational work happening in Selective Disclosure right now
- Enables you to have a token with many claims and only release the claims necessary to the interaction
 - For instance, disclose your birthdate but not your home address
- Selective Disclosure enables Minimal Disclosure
- Sometimes uses Zero Knowledge Proofs (ZKPs) but not always necessary
- Real deployments under way
 - For instance, ISO Mobile Driving Licenses use Selective Disclosure

Issuer / Holder / Verifier Model

SD-JWT

draft-ietf-oauth-selective-disclosure-jwt-03

'Simple' is a feature.

Design Principles

SD-JWT

Complexity	Selective disclosure, as simple as possible		
Algorithms	Standard cryptography: JWS Signature + Hash function		
Format	JWT & JSON		
Security	Security-by-design Easy to understand & verify Hardware binding possible Cryptographic agility		
Availability	Widely-available JWT libraries can be leveraged Already six independent implementations		
Use Cases	Universal (beyond identity use cases)		

Step 1: Prepare User Data

```
{
```

"iss": "https://example.com",
"type": "IdentityCredential",
"cnf": {"jwk": {"kty": "RSA","n": "0vx....Kgw","e": "AQAB" } },
"credentialSubject": {
 "given_name": "Max",
 "family_name": "Mustermann",
 "email": "mustermann@example.com",
 "address": {
 "street_address": "Musterstr. 23",
 "locality": "Berlin",
 "country": "DE"
 }
}

Step 2: Create *Disclosures*

{			
"iss": "https://example.com",			
"type": "IdentityCredential",			
"cnf": {"jwk": {"kty": "RSA","n": "0vxKgw","e": "AQAB" }			
"credentialSubject": {			
"given_name": "Max", ········["GO0r26nO-iW50ZcAoOilFw", "given_name", "Max"]		
"family_name": "Mustermann",	nann"]		
"email": "mustermann@example.com", ["oHDt43Vwuhpo8mzaprgCcw", "email", "musterma	nn@example.com"]		
"address": {			
"street_address": "Musterstr. 23", ["rGc0KtY6WmflywTTKEWIEQ", "street_address", "Mu	usterstr. 23"]		
"locality": "Berlin", "locality": "Berlin", "locality": "Berlin"]			
"country": "DE" ["TI15M8G5UIxPiWNZ-VLYBA", "country", "DE"]			
}	1	1	1
}	salt	claim name	claim value
}	5un		

Step 3: Hash Disclosures & Replace Original Claims

{

"iss": "https://example.com",

"type": "IdentityCredential",

"cnf": {"jwk": {"kty": "RSA","n": "0vx....Kgw","e": "AQAB" } },

"credentialSubject": {

- "_sd": ["EW1o0egqa5mGcbytT5S-kAubcEjYEUwRkXlu2vC5l20",
 - "FEx-ITHt41I8_cn0SS-hvoLneX_RGIJo_8o2xRNhfdk",
 - "igg7H5fn2eBEMIEkE5Ckbm23QuwDJITYoKRip08dYIc"],

"address": {

- "_sd": ["gqB5kmAwyry88aHjaAeO-USX6JOMaojukKsheo38O0c", "w8InvxsPXdKoowuVpyBMgI1b9_R2b6Xpa3OYOIjgQro",
 - "vOnlYtcjr872fP3Wa75Ozl7c-6_MOVdlUNtwLKKxZw0"]

- ← ["GO0r26nO-iW50ZcAoOilFw", "given_name", "Max"]
- ← ["cSlbR135i0NjhsouMxrjjg", "family_name", "Mustermann"]
 - ← ["oHDt43Vwuhpo8mzaprgCcw", "email", "mustermann@example.com"]
 - ← ["rGc0KtY6WmflywTTKEWIEQ", "street_address", "Musterstr. 23"]
 - ← ["pGQMQx-2tH2XwC_eQCFn4g", "locality", "Berlin"]
 - ← ["TI15M8G5UIxPiWNZ-VLYBA", "country", "DE"]

Step 4: Sign SD-JWT & Encode for Transport

"iss": "https://example.com",

eyJhbGciOiAiUIMyNTYiLCAia2lkljogImNBRUIVcUowY21MekQxa3pHemhlaUJhZzBZ UkF6VmRsZnhOMjqwTmdIYUEifQ.eyJpc3MiOiAiaHR0cHM6Ly9leGFtcGxlLmNvbS9pc 3N1ZXIILCAiY25mljogeyJqd2siOiB7Imt0eSI6ICJSU0EiLCAibil6IClwdng3YWdvZ WJHY1FTdS4uLi4tY3NGQ3VyLWtFZ1U4YXdhcEp6S25xREtndyIsICJIljogIkFRQUIif X0sICJ0eXBIIjogIklkZW50aXR5Q3JIZGVudGIhbCIsICJjcmVkZW50aWFsU3ViamVjd V50ZcAoOilFw", "given_name", "Max"] CI6IHsiX3NkljogWyJFVzFvMGVncWE1bUdjYnl0VDVTLWtBdWJiRWpZRVV3UmtYbHUvd kM1bDlwliwglkZFeC1JVEh0NDFJOF9jbjBTUy1odm9MbmVYX1JHbEpvXzhvMnhSTmhmZ Mxrjjg", "family_name", "Mustermann"] GsiLCAiUXhKVi0yViFlOG1jbHRSNnZWQzRtM3JlVTVhTkg5d2RKejJVZG1Sb0kxRSIsI o8mzaprgCcw", "email", "mustermann@example.com"] CJhdFVuMVRZd1JBbDRHUTdQZUV0WGFNdzJmNHVJVGIKclq0ODV3TTh2NjdFliwgImZUT XczdmtrRUx3TDFYTnVZSzhIN3pCS0NIdV91aWY2MFNsRzFweVhJVVEiLCAiaWdnN0g1Z m4yZUJFTUIFa0U1Q2tibTIzUXV3REpsVElvS1JpcDA4ZFIJYvIsICJ0cEV0bDcwaHBVX mflywTTKEWIEQ", "street_address", "Musterstr. 23"] 3hucnZaaTBHaEdvUllxam10MXpZZ3Z2NUIZMEF4N0tjill0sICJhZGRyZXNzljogeyJfc 2QiOiBbImdxQjVrbUF3eXJ5ODhhSGphQWVPLVVTWDZKT01hb2p1a0tzaGVvMzhPMGMiL 2XwC_eQCFn4g", "locality", "Berlin"] CAidk9ubFl0Y2pyODcyZlAzV2E3NU96bDdjLTZfTU9WZElVTnR3TEtLeFp3MCIsICJ3O WNZ-VLYBA", "country", "DE"] EludnhzUFhkS29vd3VWcHICTWdsMWI5X1IyYjZYcGEzT1IPSWpnUXJvll19fSwgImlhd CI6IDE1MTYyMzkwMjIsICJIeHAiOiAxNTE2MjQ3MDIyLCAic2RfZGInZXN0X2RIcml2Y XRpb25fYWxnIjoqInNoYS0yNTYifQ.1UHEPtLLUXOT51jH3qq-3C-ZidWzsB9Un-VxmM VdOtTbLLhwDTB6HJtt15p43vCXTzdpiZxtDl6fr07Tp0Dv Uma3O5 FxFi4WHnsVuVzu ASU8cFIGPi6xgH9D3w1G2hgepBS8DyQ5bA p5kN tKJVoP1xWhcQujRJ8kkEKQsRia4F hrBldl8f41wgu ipPgh1Ix4BVI7GJCIZNx94nWPT7JUFkI6Y6JkahLf3S6gB0MxtmLAe Y0qkuz8VeOZNfl_CDoq55kVTkArorfoL6D6TEjl_-w6YyU0PnlRJXJ0wrYfoyhNl8LK AP38QYMpdR7z_rsvHpQHzFAPTmevnHDq

Step 5: Base64url-encode Disclosures for Transport

"iss": "https://example.com",

eyJhbGciOiAiUIMyNTYiLCAia2lkIjoqImNBRUIVcUowY21MekQxa3pHemhlaUJhZzBZ UkF6VmRsZnhOMjqwTmdIYUEifQ.eyJpc3MiOiAiaHR0cHM6Ly9leGFtcGxlLmNvbS9pc 3N1ZXIiLCAiY25mljogeyJqd2siOiB7Imt0eSI6ICJSU0EiLCAibil6IClwdng3YWdvZ WJHY1FTdS4uLi4tY3NGQ3VyLWtFZ1U4YXdhcEp6S25xREtndyIsICJIIjogIkFRQUIif X0sICJ0eXBIljogIklkZW50aXR5Q3JIZGVudGIhbClsICJjcmVkZW50aWFsU3ViamVjd CI6IHsiX3NkIjogWyJFVzFvMGVncWE1bUdjYnl0VDVTLWtBdWJjRWpZRVV3UmtYbHUyd kM1bDlwliwglkZFeC1JVEh0NDFJOF9jbjBTUy1odm9MbmVYX1JHbEpvXzhvMnhSTmhmZ GsiLCAiUXhKVi0yVjFlOG1jbHRSNnZWQzRtM3JlVTVhTkq5d2RKejJVZG1Sb0kxRSIsI CJhdFVuMVRZd1JBbDRHUTdQZUV0WGFNdzJmNHVJVGIKclq0ODV3TTh2NjdFliwgImZUT XczdmtrRUx3TDFYTnVZSzhIN3pCS0NIdV91aWY2MFNsRzFweVhJVVEiLCAiaWdnN0g1Z m4yZUJFTUIFa0U1Q2tibTIzUXV3REpsVFlvS1JpcDA4ZFlJYyIsICJ0cFV0bDcwaHBVX 3hucnZaaTBHaEdvUllxam10MXpZZ3Z2NUIZMEF4N0tjll0sICJhZGRyZXNzljogeyJfc 2QiOiBbImdxQjVrbUF3eXJ5ODhhSGphQWVPLVVTWDZKT01hb2p1a0tzaGVvMzhPMGMiL CAidk9ubFl0Y2pyODcyZlAzV2E3NU96bDdjLTZfTU9WZElVTnR3TEtLeFp3MCIsICJ3O EludnhzUFhkS29vd3VWcHICTWdsMWI5X1IyYjZYcGEzT1IPSWpnUXJvII19fSwgImlhd CI6IDE1MTYyMzkwMjIsICJIeHAiOiAxNTE2MjQ3MDIyLCAic2RfZGInZXN0X2RIcml2Y XRpb25fYWxnIjoqInNoYS0yNTYifQ.1UHEPtLLUXOT51jH3qq-3C-ZidWzsB9Un-VxmM VdQtTbLLhwDTB6HJtt15p43yCXTzdpiZxtDl6fr07Tp0Dy_Umq3Q5_FxFj4WHnsVuVzu ASU8cFIGPi6xgH9D3w1G2hqepBS8DyQ5bA_p5kN_tKJVoP1xWhcQujRJ8kkEKQsRia4F hrBldl8f41wgu ipPgh1lx4BVI7GJCIZNx94nWPT7JUFkl6Y6JkahLf3S6gB0MxtmLAe Y0qkuz8VeOZNfl_CDog55kVTkArorfoL6D6TEjl_-w6YyU0PnIRJXJ0wrYfoyhNl8LK AP38QYMpdR7z_rsvHpQHzFAPTmevnHDq

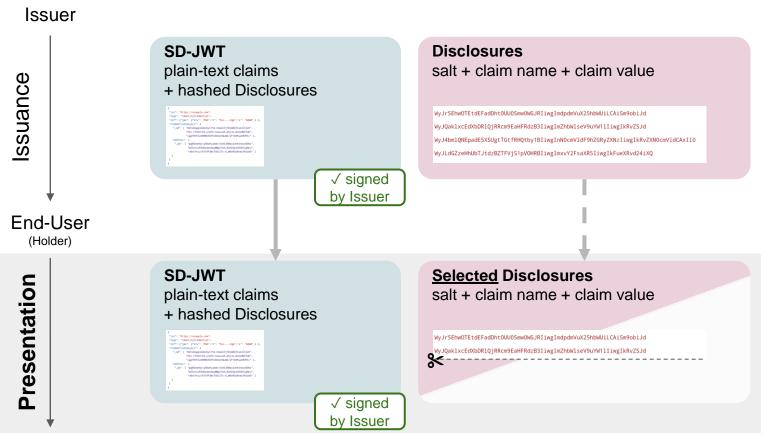
~WyJHTzByMjZuTy1pVzUwWmNBb09pbEZ3liwgImdpdmVuX25hbWUiLCAiTWF4ll0 ~WyJjU2xiUjEzNWkwTmpoc291TXhyampnliwgImZhbWlseV9uYW1lliwgIk11c3Rlcm1hb m4iXQ

~WyJvSER0NDNWd3VocG84bXphcHJnQ2N3liwgImVtYWlsliwgIm11c3Rlcm1hbm5AZXh hbXBsZS5jb20iXQ:treet_address", "Musterstr. 23"]

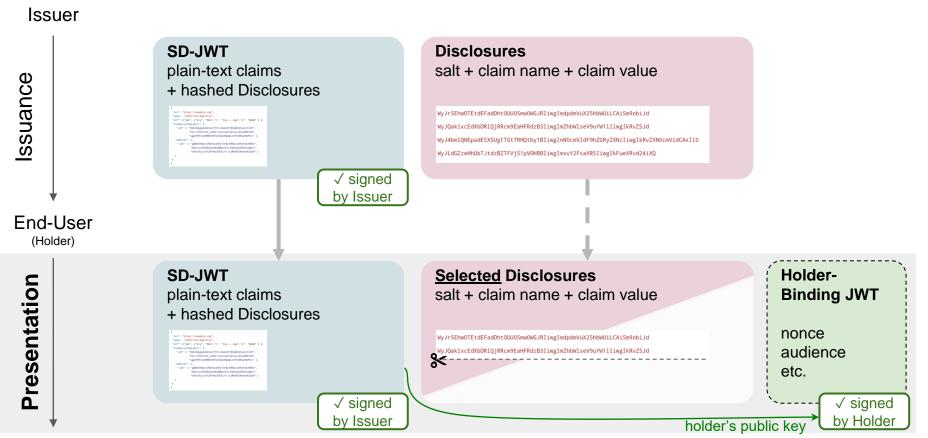
~WyJyR2MwS3RZNIdtZmx5d1RUS0VXSUVRliwgInN0cmVldF9hZGRyZXNzliwglk11c3Rlc nN0ci4gMjMiXQ

V~WyJwR1FNUXgtMnRIMlh3Q19lUUNGbjRnliwglmxvY2FsaXR5liwglkJlcmxpbiJd ~WyJUSTE1TThHNVVJeFBpV05aLVZMWUJBliwglmNvdW50cnkiLCAiREUiXQ

Issuer


Disclosures salt + claim name + claim value

WyJrSEhwOTEtdEFadDhtOUUOSmwOWGJRIIwgIndpdmVuX2ShbWUiLCAiSm9obiJd WyJQaklxcEdXbDRlQjRRcm9EaHFRdzB3IiwgImZhbWlseV9uYW11IiwgIRRvZ5Jd WyJ4bmlQNEpadE5XSUgtTGtfRHQtby1BIiwgInN0cmVldF9hZGRyZXNzIiwgIkRvZXN0cmVldCAxI10 WyJLdGZzeHhUbTJtdzBZTFVj51pV0HRBIiwgImxvY2FsaXR5IiwgIkFueXRvd24iXQ


End-User (Holder)

Presentation

Verifier

Verifier

Verifier

Verification

- Verify SD-JWT signature
- Hash over disclosed Disclosures
- Find hash digests in SD-JWT
- Replace disclosed claims in SD-JWT
- Check holder binding, if required.

Done!

Verification requires hash check!

SD-JWT with JWS using JSON serialization (proposal)

Payload as in SD-JWT

"payload": "eyJpc3MiOiAiaHR0cHM6L...Z0NGpUOUYySFpRIn19fQ",

"protected": "eyJhbGciOiAiRVMyNTYifQ",

"header": {

"kid": "e9bc097a-ce51-4036-9562-d2ade882db0d"

},

"signature": "mcndQ15m-4FblzyfB...U2ZX7g",

"disclosures": [

"WyJkcVR2WE14UzBHYTNEb2FHbmU5eDBRliwgInN1YiIsICJqb2huX2RvZV80MiJd",

"WylzanFjYjY3ejl3a3MwOHp3aUs3RXIRliwgImdpdmVuX25hbWUiLCAiSm9obiJd",

"WyJxUVdtakpsMXMxUjRscWhFTkxScnJ3IiwgImZhbWlseV9uYW1IIiwgIkRvZSJd"

Disclosures

Compatibility

- Can be used with any JSON-based data format
 - JSON-LD
 - W3C-VC Data Model
 - OpenID Connect for Identity Assurance (OIDC4IA)
- Flexibility regarding holder binding
 - External signature
 - Key distribution
- Makes no assumptions on the transport protocol
 - E.g., OIDC4VC

Available, Testable, Auditable

All examples in specification generated via reference implementation: <u>oauthstuff/draft-selective-disclosure-jwt</u> (Python)

> tooling might be separated into another GH repo in the future

Produce SD-JWT
sdjwt = SDJWT(
 user_claims,
 issuer,
 ISSUER_KEY,
 HOLDER_KEY,
 iat,
 exp,
}

Independent open-source implementations:

- Kotlin: IDunion/SD-JWT-Kotlin
- Rust: <u>kushaldas/sd_jwt</u>
- TypeScript: christianpaquin/sd-jwt
- TypeScript: <u>chike0905/sd-jwt-ts</u>
- Typescript: <u>OR13/vc-sd-jwt</u> NEW
- Java: authlete/sd-jwt NEW

IETF OAuth WG Draft

https://datatracker.ietf.org/doc/draft-fett-oauth-selective-disclosure-jwt/

Daniel Fett Authlete Kristina Yasuda Microsoft Brian Campbell Ping

mdoc

with one small caveat...

mdoc/MSO basics

- Defined in the ISO/IEC 18013-5 (https://www.iso.org/standard/69084.html)
 - focuses on mobile driving licence scenarios but can be used in other use-cases, too, in theory
- Includes a selective disclosure mechanism based on the salted hash values
- Expressed in CBOR
 - because NFC/BLE, "be happy it's not ASN.1"
- mdoc is defined as "document or application that resides on a mobile device or requires a mobile device as part of the process to gain access to the mdoc".

- Not originally defined as a "credential format".

- Mobile Security Object (MSO) is the issuer-signed object, contains digests

MSO (mobile security object) structure

```
MobileSecurityObject = {
  "digestAlgorithm" : tstr, ; Message digest algorithm used
  "valueDigests" : ValueDigests, ; Array of digests of all data elements
  "deviceKey" : DeviceKey, ; Device key in COSE_Key as defined in RFC 8152
  "docType" : tstr, ; DocType as used in Documents
  "validityInfo" : validity of the MSO and its signature
  }
```

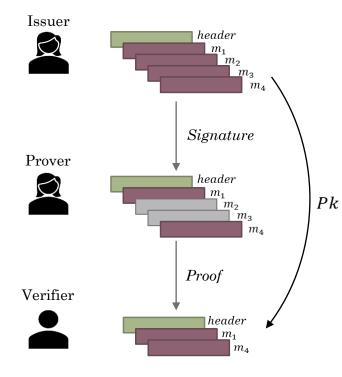
Blinds claim name by using "digestID"

mdoc response (presentation)

```
IssuerSignedItem = {
  "digestID" : uint, ; Digest ID for issuer data authentication
  "random" : bstr, ; Random value for issuer data authentication
  "elementIdentifier" : DataElementIdentifier, ; Data element identifier
  "elementValue" : DataElementValue ; Data element value
```

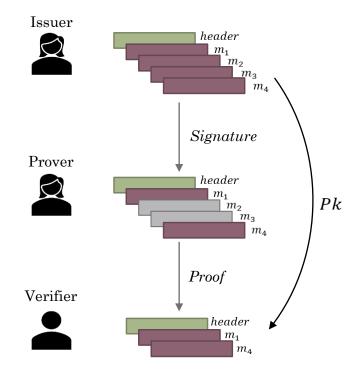
- Issuance is entirely out of scope.
 - How to send this mapping of direstID, random (salt), claim name and claim value during issuance is not defined.
 - there is also DeviceSigned. again how the issuer communicates IssuerSigned vs DeviceSigned is not defined.

mdocs: other facts


- predicates: `age_over_NN` claim
- unlinkability: issue the same copy of the credential with different User public key that can be used per verifier (to prevent RP-RP' unlinkability)
- refresh: can be only the issuer's signature over hashes, or the entire "mdoc"

Zero-Knowledge Proofs and BBS

Overview of ZKPs


- ZKPs refer to a family of cryptographic algorithms and techniques which allow a proving party to prover a given statement is true without revealing any additional information.
- ZKPs have a variety of possible applications including with verifiable credentials.
- The BBS Signature scheme is one such algorithm that meets these properties.

How does BBS work?

- The Signer can sign multiple messages and a header with a constant size signature.
- The prover can generate a (randomized) proof for a subset of the signed messages.
- The verifier can validate that proof on those messages and header with the issuers public key.
- The header must always be disclosed by the Prover (intended to contain things like the algorithm identifier).

Some deeper details on BBS

- Based on pairing based cryptography
- Leverages curves like BLS 12-381
- Scheme is currently a work item of the IRTF CFRG
- Multiple independent interoperable implementations
 - MATTR pairing_crypto
 - <u>https://github.com/Wind4Greg/grotto-bbs-signatures</u>
 - <u>https://github.com/dyne/zenroom</u>
 - o https://github.com/christianpaquin/bbs-signature
 - <u>https://github.com/hyperledger/aries-bbssignatures-rs</u>

Note - There are several more implementations that haven't aligned to the latest draft

Key Properties of interest from ZKPs for Verifiable Credentials

- Selective Disclosure: The ability to sign multiple messages/payloads and enable an intermediary (holder/prover) to selectively reveal messages from the set, while proving integrity back to the issuer.
- Unlinkable Proofs: Ability to generate proofs that are unlinkable from a cryptographic perspective. A property that is impossible to achieve with existing digital signature schemes.
- Private Holder Binding: Ability to bind a credential/signature to a key pair managed by the holder/verifier in a manner such that the public key isn't revealed during proof presentation to a verifier. A property that is impossible to achieve with existing digital signature schemes.

JSON Web Proofs and JOSE

What is JOSE?

JOSE is an abbreviation for JSON Object Signing and Encryption

It is an IETF working group which has defined representations of various security systems as JSON

- Digital Signatures
- Encryption
- Message Authentication Codes
- Cryptographic Key representations

The content being signed/encrypted *does not need* to be JSON, but often is.

Some Places that JOSE is Leveraged

JOSE aids applications in defining interoperable data protections, such as:

- **Cross-domain single sign** (profiled under OpenID Connect and FAPI)
- Supporting automation of retrieving/renewing **TLS certificates** (as ACMEv2)
- **Signaling** a security event happened, such as email **account compromise** (OpenID RISC/SSF)
- Allowing **VOIP systems** to interface across networks (SIP/STIR)
- Representing identity credentials about a person or other entity (W3C Verifiable Credentials)

Why are Identity Credentials Different?

- Identity Credentials often have **active participation** by a user agent
- They may hold significantly more sensitive and identifying information
- They may be used multiple times over an **extended lifetime**, creating new **risks of correlation**

This user agent (e.g. *wallet*) is an important stakeholder in the security system.

It needs additional capabilities and controls to limit the information being shared

JSON Web Proofs

A new work item in the *reanimated* JOSE Working Group

Goal to support newer cryptographic techniques for controlling information sharing, and supply features such as:

- Selective Disclosure
- Unlinkability
- Pseudonymity
- Computed answers (predicates)

Some of these may be achievable using existing techniques, while others may require new technologies like <u>zero-knowledge proofs</u> or even <u>verifiable compute</u>

JSON Web Proof work

- New containers representing information facets as individual payloads
- Issued/presented forms, analogous to credentials and presentations

JSON Proof Algorithms

- Describe how existing algorithms (and emerging ones like BBS) can be used
- What capabilities they provide for limiting information disclosure
- How to represent cryptographic material using JSON Web Keys

JSON Proof Tokens

• A token format comparable to JWTs for representing claims built on top

Conclusion

- JSON Web Proofs are meant to aid in privacy-critical use cases
- Target needs of future credential adoption
 - long-lived credentials
 - rich records like medical/educational transcripts
- Early draft stage, welcome comments and assistance
- Some early prototypes, further implementations welcomed

Draft Specifications

Closing Remarks and Discussion