
Current Work and Future

Trends in Selective Disclosure

Thursday, May 11, 2023

Agenda

Mike Jones – Introductory remarks

Daniel Fett – SD-JWT

Kristina Yasuda – ISO mdoc

Tobias Looker – Zero-Knowledge Proofs and BBS

David Waite – JSON Web Proofs and JOSE

All – Closing Remarks and Discussion

Selective Disclosure

● A lot of foundational work happening in Selective Disclosure right now

● Enables you to have a token with many claims and only release the claims

necessary to the interaction

○ For instance, disclose your birthdate but not your home address

● Selective Disclosure enables Minimal Disclosure

● Sometimes uses Zero Knowledge Proofs (ZKPs) but not always necessary

● Real deployments under way

○ For instance, ISO Mobile Driving Licenses use Selective Disclosure

Issuer / Holder / Verifier Model​

Holder
(Wallet)

Issuer VerifierPerson

Verifiable Credential

SD-JWT
draft-ietf-oauth-selective-disclosure-jwt-03

‘Simple’ is a feature.

Design Principles
SD-JWT

Complexity Selective disclosure, as simple as possible

Algorithms Standard cryptography: JWS Signature + Hash function

Format JWT & JSON

Security Security-by-design

Easy to understand & verify

Hardware binding possible

Cryptographic agility

Availability Widely-available JWT libraries can be leveraged

Already six independent implementations

Use Cases Universal (beyond identity use cases)

SD-JWT in 5 Simple Steps

{

"iss": "https://example.com",

"type": "IdentityCredential",

"cnf": {"jwk": {"kty": "RSA","n": "0vx....Kgw","e": "AQAB" } },

"credentialSubject": {

"given_name": "Max",

"family_name": "Mustermann",

"email": "mustermann@example.com",

"address": {

"street_address": "Musterstr. 23",

"locality": "Berlin",

"country": "DE"

}

}

}

Step 1: Prepare User Data

··· ["GO0r26nO-iW50ZcAoOilFw", "given_name", "Max"]

··· ["cSlbR135i0NjhsouMxrjjg", "family_name", "Mustermann"]

··· ["oHDt43Vwuhpo8mzaprgCcw", "email", "mustermann@example.com"]

··· ["rGc0KtY6WmflywTTKEWIEQ", "street_address", "Musterstr. 23"]

··· ["pGQMQx-2tH2XwC_eQCFn4g", "locality", "Berlin"]

··· ["TI15M8G5UIxPiWNZ-VLYBA", "country", "DE"]

SD-JWT in 5 Simple Steps

{

"iss": "https://example.com",

"type": "IdentityCredential",

"cnf": {"jwk": {"kty": "RSA","n": "0vx....Kgw","e": "AQAB" } },

"credentialSubject": {

"given_name": "Max",

"family_name": "Mustermann",

"email": "mustermann@example.com",

"address": {

"street_address": "Musterstr. 23",

"locality": "Berlin",

"country": "DE"

}

}

}

Step 2: Create Disclosures

salt claim name claim value

"_sd": ["EW1o0egqa5mGcbytT5S-kAubcEjYEUwRkXlu2vC5l20", ← ["GO0r26nO-iW50ZcAoOilFw", "given_name", "Max"]

"FEx-ITHt41I8_cn0SS-hvoLneX_RGlJo_8o2xRNhfdk", ← ["cSlbR135i0NjhsouMxrjjg", "family_name", "Mustermann"]

"igg7H5fn2eBEMIEkE5Ckbm23QuwDJlTYoKRip08dYIc"], ← ["oHDt43Vwuhpo8mzaprgCcw", "email", "mustermann@example.com"]

"_sd": ["gqB5kmAwyry88aHjaAeO-USX6JOMaojukKsheo38O0c", ← ["rGc0KtY6WmflywTTKEWIEQ", "street_address", "Musterstr. 23"]

"w8InvxsPXdKoowuVpyBMgl1b9_R2b6Xpa3OYOIjgQro", ← ["pGQMQx-2tH2XwC_eQCFn4g", "locality", "Berlin"]

"vOnlYtcjr872fP3Wa75Ozl7c-6_MOVdIUNtwLKKxZw0"] ← ["TI15M8G5UIxPiWNZ-VLYBA", "country", "DE"]

{

"iss": "https://example.com",

"type": "IdentityCredential",

"cnf": {"jwk": {"kty": "RSA","n": "0vx....Kgw","e": "AQAB" } },

"credentialSubject": {

"address": {

}

}

}

SD-JWT in 5 Simple Steps

Step 3: Hash Disclosures & Replace Original Claims

_sd["EW1o0egqa5mGcbytT5S-kAubcEjYEUwRkXlu2vC5l20", ← ["GO0r26nO-iW50ZcAoOilFw", "given_name", "Max"]

"FEx-ITHt41I8_cn0SS-hvoLneX_RGlJo_8o2xRNhfdk", ← ["cSlbR135i0NjhsouMxrjjg", "family_name", "Mustermann"]

"igg7H5fn2eBEMIEkE5Ckbm23QuwDJlTYoKRip08dYIc"] ← ["oHDt43Vwuhpo8mzaprgCcw", "email", "mustermann@example.com"]

_sd["gqB5kmAwyry88aHjaAeO-USX6JOMaojukKsheo38O0c", ← ["rGc0KtY6WmflywTTKEWIEQ", "street_address", "Musterstr. 23"]

"w8InvxsPXdKoowuVpyBMgl1b9_R2b6Xpa3OYOIjgQro", ← ["pGQMQx-2tH2XwC_eQCFn4g", "locality", "Berlin"]

"vOnlYtcjr872fP3Wa75Ozl7c-6_MOVdIUNtwLKKxZw0"] ← ["TI15M8G5UIxPiWNZ-VLYBA", "country", "DE"]

{

"iss": "https://example.com",

"type": "IdentityCredential",

"cnf": {"jwk": {"kty": "RSA","n": "0vx....Kgw","e": "AQAB" } },

"credentialSubject": {

"address": {

},

}

}

SD-JWT in 5 Simple Steps

Step 4: Sign SD-JWT & Encode for Transport

eyJhbGciOiAiUlMyNTYiLCAia2lkIjogImNBRUlVcUowY21MekQxa3pHemhlaUJhZzBZ

UkF6VmRsZnhOMjgwTmdIYUEifQ.eyJpc3MiOiAiaHR0cHM6Ly9leGFtcGxlLmNvbS9pc

3N1ZXIiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJSU0EiLCAibiI6ICIwdng3YWdvZ

WJHY1FTdS4uLi4tY3NGQ3VyLWtFZ1U4YXdhcEp6S25xREtndyIsICJlIjogIkFRQUIif

X0sICJ0eXBlIjogIklkZW50aXR5Q3JlZGVudGlhbCIsICJjcmVkZW50aWFsU3ViamVjd

CI6IHsiX3NkIjogWyJFVzFvMGVncWE1bUdjYnl0VDVTLWtBdWJjRWpZRVV3UmtYbHUyd

kM1bDIwIiwgIkZFeC1JVEh0NDFJOF9jbjBTUy1odm9MbmVYX1JHbEpvXzhvMnhSTmhmZ

GsiLCAiUXhKVi0yVjFIOG1jbHRSNnZWQzRtM3JlVTVhTkg5d2RKejJVZG1Sb0kxRSIsI

CJhdFVuMVRZd1JBbDRHUTdQZUV0WGFNdzJmNHVJVGlKclg0ODV3TTh2NjdFIiwgImZUT

XczdmtrRUx3TDFYTnVZSzhIN3pCS0NIdV91aWY2MFNsRzFweVhJVVEiLCAiaWdnN0g1Z

m4yZUJFTUlFa0U1Q2tibTIzUXV3REpsVFlvS1JpcDA4ZFlJYyIsICJ0cFV0bDcwaHBVX

3hucnZaaTBHaEdvUlIxam10MXpZZ3Z2NUlZMEF4N0tjIl0sICJhZGRyZXNzIjogeyJfc

2QiOiBbImdxQjVrbUF3eXJ5ODhhSGphQWVPLVVTWDZKT01hb2p1a0tzaGVvMzhPMGMiL

CAidk9ubFl0Y2pyODcyZlAzV2E3NU96bDdjLTZfTU9WZElVTnR3TEtLeFp3MCIsICJ3O

EludnhzUFhkS29vd3VWcHlCTWdsMWI5X1IyYjZYcGEzT1lPSWpnUXJvIl19fSwgImlhd

CI6IDE1MTYyMzkwMjIsICJleHAiOiAxNTE2MjQ3MDIyLCAic2RfZGlnZXN0X2Rlcml2Y

XRpb25fYWxnIjogInNoYS0yNTYifQ.1UHEPtLLUXOT51jH3gg-3C-ZidWzsB9Un-VxmM

VdQtTbLLhwDTB6HJtt15p43yCXTzdpiZxtDI6fr07Tp0Dy_Umg3Q5_FxFj4WHnsVuVzu

ASU8cFlGPi6xgH9D3w1G2hqepBS8DyQ5bA_p5kN_tKJVoP1xWhcQujRJ8kkEKQsRia4F

hrBldl8f41wgu_ipPqh1Ix4BVI7GJClZNx94nWPT7JUFkI6Y6JkahLf3S6gB0MxtmLAe

Y0qkuz8VeOZNfl_CDog55kVTkArorfoL6D6TEjI__-w6YyU0PnIRJXJ0wrYfoyhNl8LK

AP38QYMpdR7z_rsvHpQHzFAPTmevnHDg

_sd["EW1 o0egqa5mGcbytT5S-kAubcEjYEUwRkXlu2vC5l20", ← ["GO0r26nO-iW50ZcAoOilFw", "given_name", "Max"]

"FEx-ITH t41I8_cn0SS-hvoLneX_RGlJo_8o2xRNhfdk", ← ["cSlbR135i0NjhsouMxrjjg", "family_name", "Mustermann"]

"igg7H5fn2eB EMIEkE5Ckbm23QuwDJlTYoKRip08dYIc"] ← ["oHDt43Vwuhpo8mzaprgCcw", "email", "mustermann@example.com"]

_sd["gqB5kmAwyry88aHjaAeO-USX6JOMaojukKsheo38O0c", ← ["rGc0KtY6WmflywTTKEWIEQ", "street_address", "Musterstr. 23"]

"w8InvxsPXdKoowuVpyBMgl1b9_R2b6Xpa3OYOIjgQro", ← ["pGQMQx-2tH2XwC_eQCFn4g", "locality", "Berlin"]

"vOnlYtcjr872fP3Wa75Ozl7c-6_MOVdIUNtwLKKxZw0"] ← ["TI15M8G5UIxPiWNZ-VLYBA", "country", "DE"]

{

"iss": "https://example.com",

"type": "IdentityCredential",

"cnf": {"jwk": {"kty": "RSA","n": "0vx....Kgw","e": "AQAB" } },

"credentialSubject": {

"address": {

},

}

}

SD-JWT in 5 Simple Steps

Step 5: Base64url-encode Disclosures for Transport

eyJhbGciOiAiUlMyNTYiLCAia2lkIjogImNBRUlVcUowY21MekQxa3pHemhlaUJhZzBZ

UkF6VmRsZnhOMjgwTmdIYUEifQ.eyJpc3MiOiAiaHR0cHM6Ly9leGFtcGxlLmNvbS9pc

3N1ZXIiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJSU0EiLCAibiI6ICIwdng3YWdvZ

WJHY1FTdS4uLi4tY3NGQ3VyLWtFZ1U4YXdhcEp6S25xREtndyIsICJlIjogIkFRQUIif

X0sICJ0eXBlIjogIklkZW50aXR5Q3JlZGVudGlhbCIsICJjcmVkZW50aWFsU3ViamVjd

CI6IHsiX3NkIjogWyJFVzFvMGVncWE1bUdjYnl0VDVTLWtBdWJjRWpZRVV3UmtYbHUyd

kM1bDIwIiwgIkZFeC1JVEh0NDFJOF9jbjBTUy1odm9MbmVYX1JHbEpvXzhvMnhSTmhmZ

GsiLCAiUXhKVi0yVjFIOG1jbHRSNnZWQzRtM3JlVTVhTkg5d2RKejJVZG1Sb0kxRSIsI

CJhdFVuMVRZd1JBbDRHUTdQZUV0WGFNdzJmNHVJVGlKclg0ODV3TTh2NjdFIiwgImZUT

XczdmtrRUx3TDFYTnVZSzhIN3pCS0NIdV91aWY2MFNsRzFweVhJVVEiLCAiaWdnN0g1Z

m4yZUJFTUlFa0U1Q2tibTIzUXV3REpsVFlvS1JpcDA4ZFlJYyIsICJ0cFV0bDcwaHBVX

3hucnZaaTBHaEdvUlIxam10MXpZZ3Z2NUlZMEF4N0tjIl0sICJhZGRyZXNzIjogeyJfc

2QiOiBbImdxQjVrbUF3eXJ5ODhhSGphQWVPLVVTWDZKT01hb2p1a0tzaGVvMzhPMGMiL

CAidk9ubFl0Y2pyODcyZlAzV2E3NU96bDdjLTZfTU9WZElVTnR3TEtLeFp3MCIsICJ3O

EludnhzUFhkS29vd3VWcHlCTWdsMWI5X1IyYjZYcGEzT1lPSWpnUXJvIl19fSwgImlhd

CI6IDE1MTYyMzkwMjIsICJleHAiOiAxNTE2MjQ3MDIyLCAic2RfZGlnZXN0X2Rlcml2Y

XRpb25fYWxnIjogInNoYS0yNTYifQ.1UHEPtLLUXOT51jH3gg-3C-ZidWzsB9Un-VxmM

VdQtTbLLhwDTB6HJtt15p43yCXTzdpiZxtDI6fr07Tp0Dy_Umg3Q5_FxFj4WHnsVuVzu

ASU8cFlGPi6xgH9D3w1G2hqepBS8DyQ5bA_p5kN_tKJVoP1xWhcQujRJ8kkEKQsRia4F

hrBldl8f41wgu_ipPqh1Ix4BVI7GJClZNx94nWPT7JUFkI6Y6JkahLf3S6gB0MxtmLAe

Y0qkuz8VeOZNfl_CDog55kVTkArorfoL6D6TEjI__-w6YyU0PnIRJXJ0wrYfoyhNl8LK

AP38QYMpdR7z_rsvHpQHzFAPTmevnHDg

~WyJHTzByMjZuTy1pVzUwWmNBb09pbEZ3IiwgImdpdmVuX25hbWUiLCAiTWF4Il0

~WyJjU2xiUjEzNWkwTmpoc291TXhyampnIiwgImZhbWlseV9uYW1lIiwgIk11c3Rlcm1hb

m4iXQ

~WyJvSER0NDNWd3VocG84bXphcHJnQ2N3IiwgImVtYWlsIiwgIm11c3Rlcm1hbm5AZXh

hbXBsZS5jb20iXQ

~WyJyR2MwS3RZNldtZmx5d1RUS0VXSUVRIiwgInN0cmVldF9hZGRyZXNzIiwgIk11c3Rlc

nN0ci4gMjMiXQ

~WyJwR1FNUXgtMnRIMlh3Q19lUUNGbjRnIiwgImxvY2FsaXR5IiwgIkJlcmxpbiJd

~WyJUSTE1TThHNVVJeFBpV05aLVZMWUJBIiwgImNvdW50cnkiLCAiREUiXQ

→ Done!

SD-JWT

plain-text claims

+ hashed Disclosures

Issuer

Verifier

End-User
(Holder)

Is
s

u
a

n
c

e
P

re
s
e

n
ta

ti
o

n

✓ signed

by Issuer

Disclosures

salt + claim name + claim value

Issuer

Verifier

End-User
(Holder)

Is
s
u

a
n

c
e

P
re

s
e

n
ta

ti
o

n

SD-JWT

plain-text claims

+ hashed Disclosures

✓ signed

by Issuer

Disclosures

salt + claim name + claim value

SD-JWT

plain-text claims

+ hashed Disclosures

✓ signed

by Issuer

Selected Disclosures

salt + claim name + claim value

✂

Issuer

Verifier

End-User
(Holder)

Is
s
u

a
n

c
e

P
re

s
e

n
ta

ti
o

n

SD-JWT

plain-text claims

+ hashed Disclosures

✓ signed

by Issuer

Disclosures

salt + claim name + claim value

SD-JWT

plain-text claims

+ hashed Disclosures

✓ signed

by Issuer

Selected Disclosures

salt + claim name + claim value

Holder-

Binding JWT

nonce

audience

etc.

✓ signed

by Holderholder’s public key

✂

Verification

● Verify SD-JWT signature

● Hash over disclosed Disclosures

● Find hash digests in SD-JWT

● Replace disclosed claims in SD-JWT

● Check holder binding, if required.

Done!

Verification requires hash check!

SD-JWT with JWS using JSON serialization (proposal)

{

"payload": "eyJpc3MiOiAiaHR0cHM6L...Z0NGpUOUYySFpRIn19fQ",

"protected": "eyJhbGciOiAiRVMyNTYifQ",

"header": {

"kid": "e9bc097a-ce51-4036-9562-d2ade882db0d"

},

"signature": "mcndQ15m-4FbIzyfB...U2ZX7g",

"disclosures": [

"WyJkcVR2WE14UzBHYTNEb2FHbmU5eDBRIiwgInN1YiIsICJqb2huX2RvZV80MiJd",

"WyIzanFjYjY3ejl3a3MwOHp3aUs3RXlRIiwgImdpdmVuX25hbWUiLCAiSm9obiJd",

"WyJxUVdtakpsMXMxUjRscWhFTkxScnJ3IiwgImZhbWlseV9uYW1lIiwgIkRvZSJd"

]

}

Payload as in SD-JWT

Disclosures

Compatibility

● Can be used with any JSON-based data format
○ JSON-LD

○ W3C-VC Data Model

○ OpenID Connect for Identity Assurance (OIDC4IA)

● Flexibility regarding holder binding
○ External signature

○ Key distribution

● Makes no assumptions on the transport protocol
○ E.g., OIDC4VC

Available, Testable, Auditable

All examples in specification generated via reference implementation:

oauthstuff/draft-selective-disclosure-jwt (Python)

Independent open-source implementations:

● Kotlin: IDunion/SD-JWT-Kotlin

● Rust: kushaldas/sd_jwt

● TypeScript: christianpaquin/sd-jwt

● TypeScript: chike0905/sd-jwt-ts

● Typescript: OR13/vc-sd-jwt NEW

● Java: authlete/sd-jwt NEW

Produce SD-JWT

sdjwt = SDJWT(

user_claims,

issuer,

ISSUER_KEY,

HOLDER_KEY,

iat,

exp,

)

tooling might be separated into

another GH repo in the future

https://github.com/oauthstuff/draft-selective-disclosure-jwt
https://github.com/IDunion/SD-JWT-Kotlin
https://github.com/kushaldas/sd_jwt
https://github.com/christianpaquin/sd-jwt
https://github.com/chike0905/sd-jwt-ts
https://github.com/OR13/vc-sd-jwt
https://github.com/authlete/sd-jwt

IETF OAuth WG Draft

Daniel Fett
Authlete

Kristina Yasuda
Microsoft

Brian Campbell
Ping

https://datatracker.ietf.org/doc/draft-fett-oauth-selective-disclosure-jwt/

mdoc
with one small caveat…

- Defined in the ISO/IEC 18013-5 (https://www.iso.org/standard/69084.html)
- focuses on mobile driving licence scenarios but can be used in other use-cases, too, in theory

- Includes a selective disclosure mechanism based on the salted hash values

- Expressed in CBOR
- because NFC/BLE, “be happy it’s not ASN.1”

- mdoc is defined as “document or application that resides on a mobile

device or requires a mobile device as part of the process to gain access

to the mdoc”.

- Not originally defined as a “credential format”.

- Mobile Security Object (MSO) is the issuer-signed object, contains digests

mdoc/MSO basics

https://www.iso.org/standard/69084.html

MobileSecurityObject = {

"digestAlgorithm" : tstr, ; Message digest algorithm used

"valueDigests" : ValueDigests, ; Array of digests of all data elements

"deviceKey" : DeviceKey, ; Device key in COSE_Key as defined in RFC 8152

"docType" : tstr, ; DocType as used in Documents

"validityInfo" : validity of the MSO and its signature

}

Blinds claim name by using “digestID”

MSO (mobile security object) structure

IssuerSignedItem = {

"digestID" : uint, ; Digest ID for issuer data authentication

"random" : bstr, ; Random value for issuer data authentication

"elementIdentifier" : DataElementIdentifier, ; Data element identifier

"elementValue" : DataElementValue ; Data element value

}

- Issuance is entirely out of scope.
- How to send this mapping of direstID, random (salt), claim name and claim value

during issuance is not defined.
- there is also DeviceSigned. again how the issuer communicates IssuerSigned vs

DeviceSigned is not defined.

mdoc response (presentation)

- predicates: `age_over_NN` claim

- unlinkability: issue the same copy of the credential with different User public

key that can be used per verifier (to prevent RP-RP’ unlinkability)

- refresh: can be only the issuer’s signature over hashes, or the entire “mdoc”

mdocs: other facts

Zero-Knowledge Proofs and BBS

Overview of ZKPs

- ZKPs refer to a family of cryptographic algorithms and techniques which allow

a proving party to prover a given statement is true without revealing any

additional information.

- ZKPs have a variety of possible applications including with verifiable

credentials.

- The BBS Signature scheme is one such algorithm that meets these

properties.

How does BBS work?

• The Signer can sign multiple messages and

a header with a constant size signature.

• The prover can generate a (randomized)

proof for a subset of the signed messages.

• The verifier can validate that proof on those

messages and header with the issuers

public key.

• The header must always be disclosed by the

Prover (intended to contain things like the

algorithm identifier).

Signature

Proof

Verifier

Issuer

Prover

Some deeper details on BBS

Signature

Proof

Verifier

Issuer

Prover

• Based on pairing based cryptography

• Leverages curves like BLS 12-381

• Scheme is currently a work item of the IRTF

CFRG

• Multiple independent interoperable

implementations
○ MATTR pairing_crypto

○ https://github.com/Wind4Greg/grotto-bbs-signatures

○ https://github.com/dyne/zenroom

○ https://github.com/christianpaquin/bbs-signature

○ https://github.com/hyperledger/aries-bbssignatures-rs

Note - There are several more implementations that haven’t aligned to

the latest draft

https://github.com/Wind4Greg/grotto-bbs-signatures
https://github.com/dyne/zenroom
https://github.com/christianpaquin/bbs-signature
https://github.com/hyperledger/aries-bbssignatures-rs

Key Properties of interest from ZKPs for Verifiable
Credentials

- Selective Disclosure: The ability to sign multiple messages/payloads and enable an intermediary
(holder/prover) to selectively reveal messages from the set, while proving integrity back to the
issuer.

- Unlinkable Proofs: Ability to generate proofs that are unlinkable from a cryptographic perspective. A
property that is impossible to achieve with existing digital signature schemes.

- Private Holder Binding: Ability to bind a credential/signature to a key pair managed by the
holder/verifier in a manner such that the public key isn’t revealed during proof presentation to a
verifier. A property that is impossible to achieve with existing digital signature schemes.

JSON Web Proofs and JOSE

What is JOSE?

JOSE is an abbreviation for JSON Object Signing and Encryption

It is an IETF working group which has defined representations of various security

systems as JSON

● Digital Signatures

● Encryption

● Message Authentication Codes

● Cryptographic Key representations

The content being signed/encrypted does not need to be JSON, but often is.

Some Places that JOSE is Leveraged

JOSE aids applications in defining interoperable data protections, such as:

● Cross-domain single sign (profiled under OpenID Connect and FAPI)

● Supporting automation of retrieving/renewing TLS certificates (as ACMEv2)

● Signaling a security event happened, such as email account compromise

(OpenID RISC/SSF)

● Allowing VOIP systems to interface across networks (SIP/STIR)

● Representing identity credentials about a person or other entity

(W3C Verifiable Credentials)

Why are Identity Credentials Different?

● Identity Credentials often have active participation by a user agent

● They may hold significantly more sensitive and identifying information

● They may be used multiple times over an extended lifetime, creating new

risks of correlation

This user agent (e.g. wallet) is an important stakeholder in the security system.

It needs additional capabilities and controls to limit the information being shared

JSON Web Proofs

A new work item in the reanimated JOSE Working Group

Goal to support newer cryptographic techniques for controlling information sharing,
and supply features such as:

● Selective Disclosure

● Unlinkability

● Pseudonymity

● Computed answers (predicates)

Some of these may be achievable using existing techniques, while others may require
new technologies like zero-knowledge proofs or even verifiable compute

JSON Web Proof work

● New containers representing information facets as individual payloads

● Issued/presented forms, analogous to credentials and presentations

JSON Proof Algorithms

● Describe how existing algorithms (and emerging ones like BBS) can be used

● What capabilities they provide for limiting information disclosure

● How to represent cryptographic material using JSON Web Keys

JSON Proof Tokens

● A token format comparable to JWTs for representing claims built on top

Conclusion

● JSON Web Proofs are meant to aid in

privacy-critical use cases

● Target needs of future credential adoption

○ long-lived credentials

○ rich records like medical/educational transcripts

● Early draft stage,

welcome comments and assistance

● Some early prototypes,

further implementations welcomed Draft Specifications

Closing Remarks and Discussion

	Slide 1: Current Work and Future Trends in Selective Disclosure
	Slide 2: Agenda
	Slide 3: Selective Disclosure
	Slide 4: Issuer / Holder / Verifier Model​
	Slide 5: SD-JWT
	Slide 6: ‘Simple’ is a feature.
	Slide 7: Design Principles
	Slide 8: SD-JWT in 5 Simple Steps
	Slide 9: SD-JWT in 5 Simple Steps
	Slide 10: SD-JWT in 5 Simple Steps
	Slide 11: SD-JWT in 5 Simple Steps
	Slide 12: SD-JWT in 5 Simple Steps
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Verification
	Slide 17: SD-JWT with JWS using JSON serialization (proposal)
	Slide 18: Compatibility
	Slide 19: Available, Testable, Auditable
	Slide 20: IETF OAuth WG Draft
	Slide 21: mdoc with one small caveat…
	Slide 22: mdoc/MSO basics
	Slide 23: MSO (mobile security object) structure
	Slide 24: mdoc response (presentation)
	Slide 25: mdocs: other facts
	Slide 26: Zero-Knowledge Proofs and BBS
	Slide 27: Overview of ZKPs
	Slide 28: How does BBS work?
	Slide 29: Some deeper details on BBS
	Slide 30: Key Properties of interest from ZKPs for Verifiable Credentials
	Slide 31: JSON Web Proofs and JOSE
	Slide 32: What is JOSE?
	Slide 33: Some Places that JOSE is Leveraged
	Slide 34: Why are Identity Credentials Different?
	Slide 35: JSON Web Proofs
	Slide 36: JSON Web Proof work
	Slide 37: Conclusion
	Slide 38: Closing Remarks and Discussion

