TOC 
JOSE Working GroupM. Jones
Internet-DraftMicrosoft
Intended status: Standards TrackE. Rescorla
Expires: June 30, 2013RTFM
 J. Hildebrand
 Cisco
 December 27, 2012


JSON Web Encryption (JWE)
draft-ietf-jose-json-web-encryption-08

Abstract

JSON Web Encryption (JWE) is a means of representing encrypted content using JavaScript Object Notation (JSON) data structures. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification. Related digital signature and MAC capabilities are described in the separate JSON Web Signature (JWS) specification.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on June 30, 2013.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.



Table of Contents

1.  Introduction
    1.1.  Notational Conventions
2.  Terminology
3.  JSON Web Encryption (JWE) Overview
    3.1.  Example JWE using RSAES OAEP and AES GCM
    3.2.  Example JWE using RSAES-PKCS1-V1_5 and AES CBC
4.  JWE Header
    4.1.  Reserved Header Parameter Names
        4.1.1.  "alg" (Algorithm) Header Parameter
        4.1.2.  "enc" (Encryption Method) Header Parameter
        4.1.3.  "epk" (Ephemeral Public Key) Header Parameter
        4.1.4.  "zip" (Compression Algorithm) Header Parameter
        4.1.5.  "jku" (JWK Set URL) Header Parameter
        4.1.6.  "jwk" (JSON Web Key) Header Parameter
        4.1.7.  "x5u" (X.509 URL) Header Parameter
        4.1.8.  "x5t" (X.509 Certificate Thumbprint) Header Parameter
        4.1.9.  "x5c" (X.509 Certificate Chain) Header Parameter
        4.1.10.  "kid" (Key ID) Header Parameter
        4.1.11.  "typ" (Type) Header Parameter
        4.1.12.  "cty" (Content Type) Header Parameter
        4.1.13.  "apu" (Agreement PartyUInfo) Header Parameter
        4.1.14.  "apv" (Agreement PartyVInfo) Header Parameter
        4.1.15.  "epu" (Encryption PartyUInfo) Header Parameter
        4.1.16.  "epv" (Encryption PartyVInfo) Header Parameter
    4.2.  Public Header Parameter Names
    4.3.  Private Header Parameter Names
5.  Producing and Consuming JWEs
    5.1.  Message Encryption
    5.2.  Message Decryption
    5.3.  String Comparison Rules
6.  Encrypting JWEs with Cryptographic Algorithms
    6.1.  CMK Encryption
7.  IANA Considerations
    7.1.  Registration of JWE Header Parameter Names
        7.1.1.  Registry Contents
    7.2.  JSON Web Signature and Encryption Type Values Registration
        7.2.1.  Registry Contents
    7.3.  Media Type Registration
        7.3.1.  Registry Contents
8.  Security Considerations
9.  References
    9.1.  Normative References
    9.2.  Informative References
Appendix A.  JWE Examples
    A.1.  Example JWE using RSAES OAEP and AES GCM
        A.1.1.  JWE Header
        A.1.2.  Encoded JWE Header
        A.1.3.  Content Master Key (CMK)
        A.1.4.  Key Encryption
        A.1.5.  Encoded JWE Encrypted Key
        A.1.6.  Initialization Vector
        A.1.7.  "Additional Authenticated Data" Parameter
        A.1.8.  Plaintext Encryption
        A.1.9.  Encoded JWE Ciphertext
        A.1.10.  Encoded JWE Integrity Value
        A.1.11.  Complete Representation
        A.1.12.  Validation
    A.2.  Example JWE using RSAES-PKCS1-V1_5 and AES CBC
        A.2.1.  JWE Header
        A.2.2.  Encoded JWE Header
        A.2.3.  Content Master Key (CMK)
        A.2.4.  Key Encryption
        A.2.5.  Encoded JWE Encrypted Key
        A.2.6.  Key Derivation
        A.2.7.  Initialization Vector
        A.2.8.  Plaintext Encryption
        A.2.9.  Encoded JWE Ciphertext
        A.2.10.  Secured Input Value
        A.2.11.  JWE Integrity Value
        A.2.12.  Encoded JWE Integrity Value
        A.2.13.  Complete Representation
        A.2.14.  Validation
    A.3.  Example JWE using AES Key Wrap and AES GCM
        A.3.1.  JWE Header
        A.3.2.  Encoded JWE Header
        A.3.3.  Content Master Key (CMK)
        A.3.4.  Key Encryption
        A.3.5.  Encoded JWE Encrypted Key
        A.3.6.  Initialization Vector
        A.3.7.  "Additional Authenticated Data" Parameter
        A.3.8.  Plaintext Encryption
        A.3.9.  Encoded JWE Ciphertext
        A.3.10.  Encoded JWE Integrity Value
        A.3.11.  Complete Representation
        A.3.12.  Validation
    A.4.  Example Key Derivation for "enc" value "A128CBC+HS256"
        A.4.1.  CEK Generation
        A.4.2.  CIK Generation
    A.5.  Example Key Derivation for "enc" value "A256CBC+HS512"
        A.5.1.  CEK Generation
        A.5.2.  CIK Generation
Appendix B.  Acknowledgements
Appendix C.  Open Issues
Appendix D.  Document History
§  Authors' Addresses




 TOC 

1.  Introduction

JSON Web Encryption (JWE) is a compact encryption format intended for space constrained environments such as HTTP Authorization headers and URI query parameters. It represents this content using JavaScript Object Notation (JSON) [RFC4627] (Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” July 2006.) based data structures. The JWE cryptographic mechanisms encrypt and provide integrity protection for arbitrary sequences of bytes.

Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) [JWA] (Jones, M., “JSON Web Algorithms (JWA),” December 2012.) specification. Related digital signature and MAC capabilities are described in the separate JSON Web Signature (JWS) [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” December 2012.) specification.



 TOC 

1.1.  Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in Key words for use in RFCs to Indicate Requirement Levels [RFC2119] (Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” March 1997.).



 TOC 

2.  Terminology

JSON Web Encryption (JWE)
A data structure representing an encrypted message. The structure consists of five parts: the JWE Header, the JWE Encrypted Key, the JWE Initialization Vector, the JWE Ciphertext, and the JWE Integrity Value.
Plaintext
The bytes to be encrypted -- a.k.a., the message. The plaintext can contain an arbitrary sequence of bytes.
Ciphertext
An encrypted representation of the Plaintext.
Content Encryption Key (CEK)
A symmetric key used to encrypt the Plaintext for the recipient to produce the Ciphertext.
Content Integrity Key (CIK)
A key used with a MAC function to ensure the integrity of the Ciphertext and the parameters used to create it.
Content Master Key (CMK)
A key from which the CEK and CIK are derived. When key wrapping or key encryption are employed, the CMK is randomly generated and encrypted to the recipient as the JWE Encrypted Key. When direct encryption with a shared symmetric key is employed, the CMK is the shared key. When key agreement without key wrapping is employed, the CMK is the result of the key agreement algorithm.
JSON Text Object
A UTF-8 encoded text string representing a JSON object; the syntax of JSON objects is defined in Section 2.2 of [RFC4627] (Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” July 2006.).
JWE Header
A JSON Text Object that describes the encryption operations applied to create the JWE Encrypted Key, the JWE Ciphertext, and the JWE Integrity Value.
JWE Encrypted Key
When key wrapping or key encryption are employed, the Content Master Key (CMK) is encrypted with the intended recipient's key and the resulting encrypted content is recorded as a byte array, which is referred to as the JWE Encrypted Key. Otherwise, when direct encryption with a shared or agreed upon symmetric key is employed, the JWE Encrypted Key is the empty byte array.
JWE Initialization Vector
A byte array containing the Initialization Vector used when encrypting the Plaintext.
JWE Ciphertext
A byte array containing the Ciphertext.
JWE Integrity Value
A byte array containing a MAC value that ensures the integrity of the Ciphertext and the parameters used to create it.
Base64url Encoding
The URL- and filename-safe Base64 encoding described in RFC 4648 (Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” October 2006.) [RFC4648], Section 5, with the (non URL-safe) '=' padding characters omitted, as permitted by Section 3.2. (See Appendix C of [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” December 2012.) for notes on implementing base64url encoding without padding.)
Encoded JWE Header
Base64url encoding of the JWE Header.
Encoded JWE Encrypted Key
Base64url encoding of the JWE Encrypted Key.
Encoded JWE Initialization Vector
Base64url encoding of the JWE Initialization Vector.
Encoded JWE Ciphertext
Base64url encoding of the JWE Ciphertext.
Encoded JWE Integrity Value
Base64url encoding of the JWE Integrity Value.
Header Parameter Name
The name of a member of the JWE Header.
Header Parameter Value
The value of a member of the JWE Header.
JWE Compact Serialization
A representation of the JWE as the concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE Integrity Value in that order, with the five strings being separated by four period ('.') characters.
Authenticated Encryption
An Authenticated Encryption algorithm is one that provides an integrated content integrity check. Authenticated Encryption algorithms accept two inputs, the plaintext and the "additional authenticated data" value, and produce two outputs, the ciphertext and the "authentication tag" value. AES Galois/Counter Mode (GCM) is one such algorithm.
Collision Resistant Namespace
A namespace that allows names to be allocated in a manner such that they are highly unlikely to collide with other names. For instance, collision resistance can be achieved through administrative delegation of portions of the namespace or through use of collision-resistant name allocation functions. Examples of Collision Resistant Namespaces include: Domain Names, Object Identifiers (OIDs) as defined in the ITU-T X.660 and X.670 Recommendation series, and Universally Unique IDentifiers (UUIDs) [RFC4122] (Leach, P., Mealling, M., and R. Salz, “A Universally Unique IDentifier (UUID) URN Namespace,” July 2005.). When using an administratively delegated namespace, the definer of a name needs to take reasonable precautions to ensure they are in control of the portion of the namespace they use to define the name.
StringOrURI
A JSON string value, with the additional requirement that while arbitrary string values MAY be used, any value containing a ":" character MUST be a URI [RFC3986] (Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,” January 2005.). StringOrURI values are compared as case-sensitive strings with no transformations or canonicalizations applied.



 TOC 

3.  JSON Web Encryption (JWE) Overview

JWE represents encrypted content using JSON data structures and base64url encoding. The representation consists of five parts: the JWE Header, the JWE Encrypted Key, the JWE Initialization Vector, the JWE Ciphertext, and the JWE Integrity Value. In the Compact Serialization, the five parts are base64url-encoded for transmission, and represented as the concatenation of the encoded strings in that order, with the five strings being separated by four period ('.') characters. (A JSON Serialization for this information is defined in the separate JSON Web Encryption JSON Serialization (JWE-JS) [JWE‑JS] (Jones, M., “JSON Web Encryption JSON Serialization (JWE-JS),” December 2012.) specification.)

JWE utilizes encryption to ensure the confidentiality of the Plaintext. JWE adds a content integrity check if not provided by the underlying encryption algorithm.



 TOC 

3.1.  Example JWE using RSAES OAEP and AES GCM

This example encrypts the plaintext "Live long and prosper." to the recipient using RSAES OAEP and AES GCM. The AES GCM algorithm has an integrated integrity check.

The following example JWE Header declares that:

  {"alg":"RSA-OAEP","enc":"A256GCM"}

Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this Encoded JWE Header value:

  eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ

The remaining steps to finish creating this JWE are:

The final result in this example (with line breaks for display purposes only) is:

  eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ.
  M2XxpbORKezKSzzQL_95-GjiudRBTqn_omS8z9xgoRb7L0Jw5UsEbxmtyHn2T71m
  rZLkjg4Mp8gbhYoltPkEOHvAopz25-vZ8C2e1cOaAo5WPcbSIuFcB4DjBOM3t0UA
  O6JHkWLuAEYoe58lcxIQneyKdaYSLbV9cKqoUoFQpvKWYRHZbfszIyfsa18rmgTj
  zrtLDTPnc09DSJE24aQ8w3i8RXEDthW9T1J6LsTH_vwHdwUgkI-tC2PNeGrnM-dN
  SfzF3Y7-lwcGy0FsdXkPXytvDV7y4pZeeUiQ-0VdibIN2AjjfW60nfrPuOjepMFG
  6BBBbR37pHcyzext9epOAQ.
  48V1_ALb6US04U3b.
  _e21tGGhac_peEFkLXr2dMPUZiUkrw.
  7V5ZDko0v_mf2PAc4JMiUg

See Appendix A.1 (Example JWE using RSAES OAEP and AES GCM) for the complete details of computing this JWE.



 TOC 

3.2.  Example JWE using RSAES-PKCS1-V1_5 and AES CBC

This example encrypts the plaintext "No matter where you go, there you are." to the recipient using RSAES-PKCS1-V1_5 and AES CBC. AES CBC does not have an integrated integrity check, so a separate integrity check calculation is performed using HMAC SHA-256, with separate encryption and integrity keys being derived from a master key using the Concat KDF with the SHA-256 digest function.

The following example JWE Header (with line breaks for display purposes only) declares that:

  {"alg":"RSA1_5","enc":"A128CBC+HS256"}

Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this Encoded JWE Header value:

  eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDK0hTMjU2In0

The remaining steps to finish creating this JWE are like the previous example, but with an additional step to compute the separate integrity value:

The final result in this example (with line breaks for display purposes only) is:

  eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDK0hTMjU2In0.
  O6AqXqgVlJJ4c4lp5sXZd7bpGHAw6ARkHUeXQxD1cAW4-X1x0qtj_AN0mukqEOl4
  Y6UOwJXIJY9-G1ELK-RQWrKH_StR-AM9H7GpKmSEji8QYOcMOjr-u9H1Lt_pBEie
  G802SxWz0rbFTXRcj4BWLxcpCtjUZ31AP-sc-L_eCZ5UNl0aSRNqFskuPkzRsFZR
  DJqSSJeVOyJ7pZCQ83fli19Vgi_3R7XMUqluQuuc7ZHOWixi47jXlBTlWRZ5iFxa
  S8G6J8wUrd4BKggAw3qX5XoIfXQVlQZE0Vmkq_zQSIo5LnFKyowooRcdsEuNh9B9
  Mkyt0ZQElG-jGdtHWjZSOA.
  AxY8DCtDaGlsbGljb3RoZQ.
  1eBWFgcrz40wC88cgv8rPgu3EfmC1p4zT0kIxxfSF2zDJcQ-iEHk1jQM95xAdr5Z.
  RBGhYzE8_cZLHjJqqHuLhzbgWgL_wV3LDSUrcbkOiIA

See Appendix A.2 (Example JWE using RSAES-PKCS1-V1_5 and AES CBC) for the complete details of computing this JWE.



 TOC 

4.  JWE Header

The members of the JSON object represented by the JWE Header describe the encryption applied to the Plaintext and optionally additional properties of the JWE. The Header Parameter Names within this object MUST be unique; JWEs with duplicate Header Parameter Names MUST be rejected. Implementations MUST understand the entire contents of the header; otherwise, the JWE MUST be rejected.

There are two ways of distinguishing whether a header is a JWS Header or a JWE Header. The first is by examining the alg (algorithm) header value. If the value represents a digital signature or MAC algorithm, or is the value none, it is for a JWS; if it represents an encryption or key agreement algorithm, it is for a JWE. A second method is determining whether an enc (encryption method) member exists. If the enc member exists, it is a JWE; otherwise, it is a JWS. Both methods will yield the same result for all legal input values.

There are three classes of Header Parameter Names: Reserved Header Parameter Names, Public Header Parameter Names, and Private Header Parameter Names.



 TOC 

4.1.  Reserved Header Parameter Names

The following Header Parameter Names are reserved with meanings as defined below. All the names are short because a core goal of JWE is for the representations to be compact.

Additional reserved Header Parameter Names MAY be defined via the IANA JSON Web Signature and Encryption Header Parameters registry [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” December 2012.). As indicated by the common registry, JWSs and JWEs share a common header parameter space; when a parameter is used by both specifications, its usage must be compatible between the specifications.



 TOC 

4.1.1.  "alg" (Algorithm) Header Parameter

The alg (algorithm) header parameter identifies the cryptographic algorithm used to encrypt or determine the value of the Content Master Key (CMK). The algorithm specified by the alg value MUST be supported by the implementation and there MUST be a key for use with that algorithm associated with the intended recipient or the JWE MUST be rejected. alg values SHOULD either be registered in the IANA JSON Web Signature and Encryption Algorithms registry [JWA] (Jones, M., “JSON Web Algorithms (JWA),” December 2012.) or be a value that contains a Collision Resistant Namespace. The alg value is a case sensitive string containing a StringOrURI value. Use of this header parameter is REQUIRED.

A list of defined alg values can be found in the IANA JSON Web Signature and Encryption Algorithms registry [JWA] (Jones, M., “JSON Web Algorithms (JWA),” December 2012.); the initial contents of this registry are the values defined in Section 4.1 of the JSON Web Algorithms (JWA) [JWA] (Jones, M., “JSON Web Algorithms (JWA),” December 2012.) specification.



 TOC 

4.1.2.  "enc" (Encryption Method) Header Parameter

The enc (encryption method) header parameter identifies the block encryption algorithm used to encrypt the Plaintext to produce the Ciphertext. This algorithm MUST be an Authenticated Encryption algorithm with a specified key length. The algorithm specified by the enc value MUST be supported by the implementation or the JWE MUST be rejected. enc values SHOULD either be registered in the IANA JSON Web Signature and Encryption Algorithms registry [JWA] (Jones, M., “JSON Web Algorithms (JWA),” December 2012.) or be a value that contains a Collision Resistant Namespace. The enc value is a case sensitive string containing a StringOrURI value. Use of this header parameter is REQUIRED.

A list of defined enc values can be found in the IANA JSON Web Signature and Encryption Algorithms registry [JWA] (Jones, M., “JSON Web Algorithms (JWA),” December 2012.); the initial contents of this registry are the values defined in Section 4.2 of the JSON Web Algorithms (JWA) [JWA] (Jones, M., “JSON Web Algorithms (JWA),” December 2012.) specification.



 TOC 

4.1.3.  "epk" (Ephemeral Public Key) Header Parameter

The epk (ephemeral public key) value created by the originator for the use in key agreement algorithms. This key is represented as a JSON Web Key [JWK] (Jones, M., “JSON Web Key (JWK),” December 2012.) value. Use of this header parameter is OPTIONAL, although its use is REQUIRED with some alg algorithms.



 TOC 

4.1.4.  "zip" (Compression Algorithm) Header Parameter

The zip (compression algorithm) applied to the Plaintext before encryption, if any. If present, the value of the zip header parameter MUST be the case sensitive string "DEF". Compression is performed with the DEFLATE [RFC1951] (Deutsch, P., “DEFLATE Compressed Data Format Specification version 1.3,” May 1996.) algorithm. If no zip parameter is present, no compression is applied to the Plaintext before encryption. Use of this header parameter is OPTIONAL.



 TOC 

4.1.5.  "jku" (JWK Set URL) Header Parameter

The jku (JWK Set URL) header parameter is a URI [RFC3986] (Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,” January 2005.) that refers to a resource for a set of JSON-encoded public keys, one of which corresponds to the key used to encrypt the JWE; this can be used to determine the private key needed to decrypt the JWE. The keys MUST be encoded as a JSON Web Key Set (JWK Set) [JWK] (Jones, M., “JSON Web Key (JWK),” December 2012.). The protocol used to acquire the resource MUST provide integrity protection; an HTTP GET request to retrieve the certificate MUST use TLS [RFC2818] (Rescorla, E., “HTTP Over TLS,” May 2000.) [RFC5246] (Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” August 2008.); the identity of the server MUST be validated, as per Section 3.1 of HTTP Over TLS [RFC2818] (Rescorla, E., “HTTP Over TLS,” May 2000.). Use of this header parameter is OPTIONAL.



 TOC 

4.1.6.  "jwk" (JSON Web Key) Header Parameter

The jwk (JSON Web Key) header parameter is a public key that corresponds to the key used to encrypt the JWE; this can be used to determine the private key needed to decrypt the JWE. This key is represented as a JSON Web Key [JWK] (Jones, M., “JSON Web Key (JWK),” December 2012.). Use of this header parameter is OPTIONAL.



 TOC 

4.1.7.  "x5u" (X.509 URL) Header Parameter

The x5u (X.509 URL) header parameter is a URI [RFC3986] (Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,” January 2005.) that refers to a resource for the X.509 public key certificate or certificate chain [RFC5280] (Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” May 2008.) corresponding to the key used to encrypt the JWE; this can be used to determine the private key needed to decrypt the JWE. The identified resource MUST provide a representation of the certificate or certificate chain that conforms to RFC 5280 (Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” May 2008.) [RFC5280] in PEM encoded form [RFC1421] (Linn, J., “Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and Authentication Procedures,” February 1993.). The certificate containing the public key of the entity that encrypted the JWE MUST be the first certificate. This MAY be followed by additional certificates, with each subsequent certificate being the one used to certify the previous one. The protocol used to acquire the resource MUST provide integrity protection; an HTTP GET request to retrieve the certificate MUST use TLS [RFC2818] (Rescorla, E., “HTTP Over TLS,” May 2000.) [RFC5246] (Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” August 2008.); the identity of the server MUST be validated, as per Section 3.1 of HTTP Over TLS [RFC2818] (Rescorla, E., “HTTP Over TLS,” May 2000.). Use of this header parameter is OPTIONAL.



 TOC 

4.1.8.  "x5t" (X.509 Certificate Thumbprint) Header Parameter

The x5t (X.509 Certificate Thumbprint) header parameter provides a base64url encoded SHA-1 thumbprint (a.k.a. digest) of the DER encoding of the X.509 certificate [RFC5280] (Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” May 2008.) corresponding to the key used to encrypt the JWE; this can be used to determine the private key needed to decrypt the JWE. Use of this header parameter is OPTIONAL.

If, in the future, certificate thumbprints need to be computed using hash functions other than SHA-1, it is suggested that additional related header parameters be defined for that purpose. For example, it is suggested that a new x5t#S256 (X.509 Certificate Thumbprint using SHA-256) header parameter could be defined by registering it in the IANA JSON Web Signature and Encryption Header Parameters registry [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” December 2012.).



 TOC 

4.1.9.  "x5c" (X.509 Certificate Chain) Header Parameter

The x5c (X.509 Certificate Chain) header parameter contains the X.509 public key certificate or certificate chain [RFC5280] (Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” May 2008.) corresponding to the key used to encrypt the JWE; this can be used to determine the private key needed to decrypt the JWE. The certificate or certificate chain is represented as an array of certificate value strings. Each string is a base64 encoded ([RFC4648] (Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” October 2006.) Section 4 -- not base64url encoded) DER [ITU.X690.1994] (International Telecommunications Union, “Information Technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER),” 1994.) PKIX certificate value. The certificate containing the public key of the entity that encrypted the JWE MUST be the first certificate. This MAY be followed by additional certificates, with each subsequent certificate being the one used to certify the previous one. The recipient MUST verify the certificate chain according to [RFC5280] (Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” May 2008.) and reject the JWE if any validation failure occurs. Use of this header parameter is OPTIONAL.

See Appendix B of [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” December 2012.) for an example x5c value.



 TOC 

4.1.10.  "kid" (Key ID) Header Parameter

The kid (key ID) header parameter is a hint indicating which key was used to encrypt the JWE; this can be used to determine the private key needed to decrypt the JWE. This parameter allows originators to explicitly signal a change of key to recipients. Should the recipient be unable to locate a key corresponding to the kid value, they SHOULD treat that condition as an error. The interpretation of the kid value is unspecified. Its value MUST be a string. Use of this header parameter is OPTIONAL.

When used with a JWK, the kid value MAY be used to match a JWK kid parameter value.



 TOC 

4.1.11.  "typ" (Type) Header Parameter

The typ (type) header parameter is used to declare the type of this object. The type value JWE MAY be used to indicate that this object is a JWE. The typ value is a case sensitive string. Use of this header parameter is OPTIONAL.

MIME Media Type [RFC2046] (Freed, N. and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types,” November 1996.) values MAY be used as typ values.

typ values SHOULD either be registered in the IANA JSON Web Signature and Encryption Type Values registry [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” December 2012.) or be a value that contains a Collision Resistant Namespace.



 TOC 

4.1.12.  "cty" (Content Type) Header Parameter

The cty (content type) header parameter is used to declare the type of the encrypted content (the Plaintext). The cty value is a case sensitive string. Use of this header parameter is OPTIONAL.

The values used for the cty header parameter come from the same value space as the typ header parameter, with the same rules applying.



 TOC 

4.1.13.  "apu" (Agreement PartyUInfo) Header Parameter

The apu (agreement PartyUInfo) value for key agreement algorithms using it (such as ECDH-ES), represented as a base64url encoded string. Use of this header parameter is OPTIONAL.



 TOC 

4.1.14.  "apv" (Agreement PartyVInfo) Header Parameter

The apv (agreement PartyVInfo) value for key agreement algorithms using it (such as ECDH-ES), represented as a base64url encoded string. Use of this header parameter is OPTIONAL.



 TOC 

4.1.15.  "epu" (Encryption PartyUInfo) Header Parameter

The epu (encryption PartyUInfo) value for plaintext encryption algorithms using it (such as A128CBC+HS256), represented as a base64url encoded string. Use of this header parameter is OPTIONAL.



 TOC 

4.1.16.  "epv" (Encryption PartyVInfo) Header Parameter

The epv (encryption PartyVInfo) value for plaintext encryption algorithms using it (such as A128CBC+HS256), represented as a base64url encoded string. Use of this header parameter is OPTIONAL.



 TOC 

4.2.  Public Header Parameter Names

Additional Header Parameter Names can be defined by those using JWEs. However, in order to prevent collisions, any new Header Parameter Name SHOULD either be registered in the IANA JSON Web Signature and Encryption Header Parameters registry [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” December 2012.) or be a Public Name: a value that contains a Collision Resistant Namespace. In each case, the definer of the name or value needs to take reasonable precautions to make sure they are in control of the part of the namespace they use to define the Header Parameter Name.

New header parameters should be introduced sparingly, as they can result in non-interoperable JWEs.



 TOC 

4.3.  Private Header Parameter Names

A producer and consumer of a JWE may agree to use Header Parameter Names that are Private Names: names that are not Reserved Names Section 4.1 (Reserved Header Parameter Names) or Public Names Section 4.2 (Public Header Parameter Names). Unlike Public Names, Private Names are subject to collision and should be used with caution.



 TOC 

5.  Producing and Consuming JWEs



 TOC 

5.1.  Message Encryption

The message encryption process is as follows. The order of the steps is not significant in cases where there are no dependencies between the inputs and outputs of the steps.

  1. When key wrapping, key encryption, or key agreement with key wrapping are employed, generate a random Content Master Key (CMK). See RFC 4086 (Eastlake, D., Schiller, J., and S. Crocker, “Randomness Requirements for Security,” June 2005.) [RFC4086] for considerations on generating random values. The CMK MUST have a length equal to that required for the block encryption algorithm.
  2. When key agreement is employed, use the key agreement algorithm to compute the value of the agreed upon key. When key agreement without key wrapping is employed, let the Content Master Key (CMK) be the agreed upon key. When key agreement with key wrapping is employed, the agreed upon key will be used to wrap the CMK.
  3. When key wrapping, key encryption, or key agreement with key wrapping are employed, encrypt the CMK for the recipient (see Section 6.1 (CMK Encryption)) and let the result be the JWE Encrypted Key. Otherwise, when direct encryption with a shared or agreed upon symmetric key is employed, let the JWE Encrypted Key be the empty byte array.
  4. When direct encryption with a shared symmetric key is employed, let the Content Master Key (CMK) be the shared key.
  5. Base64url encode the JWE Encrypted Key to create the Encoded JWE Encrypted Key.
  6. Generate a random JWE Initialization Vector of the correct size for the block encryption algorithm (if required for the algorithm); otherwise, let the JWE Initialization Vector be the empty byte string.
  7. Base64url encode the JWE Initialization Vector to create the Encoded JWE Initialization Vector.
  8. Compress the Plaintext if a zip parameter was included.
  9. Serialize the (compressed) Plaintext into a byte sequence M.
  10. Create a JWE Header containing the encryption parameters used. Note that white space is explicitly allowed in the representation and no canonicalization need be performed before encoding.
  11. Base64url encode the bytes of the UTF-8 representation of the JWE Header to create the Encoded JWE Header.
  12. Let the "additional authenticated data" value be the bytes of the ASCII representation of the concatenation of the Encoded JWE Header, a period ('.') character, the Encoded JWE Encrypted Key, a second period character ('.'), and the Encoded JWE Initialization Vector.
  13. Encrypt M using the CMK, the JWE Initialization Vector, and the "additional authenticated data" value using the specified block encryption algorithm to create the JWE Ciphertext value and the JWE Integrity Value (which is the "authentication tag" output from the calculation).
  14. Base64url encode the JWE Ciphertext to create the Encoded JWE Ciphertext.
  15. Base64url encode the JWE Integrity Value to create the Encoded JWE Integrity Value.
  16. The five encoded parts, taken together, are the result.
  17. The Compact Serialization of this result is the concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE Integrity Value in that order, with the five strings being separated by four period ('.') characters.


 TOC 

5.2.  Message Decryption

The message decryption process is the reverse of the encryption process. The order of the steps is not significant in cases where there are no dependencies between the inputs and outputs of the steps. If any of these steps fails, the JWE MUST be rejected.

  1. Determine the Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE Integrity Value values contained in the JWE. When using the Compact Serialization, these five values are represented in that order, separated by four period ('.') characters.
  2. The Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE Integrity Value MUST be successfully base64url decoded following the restriction that no padding characters have been used.
  3. The resulting JWE Header MUST be completely valid JSON syntax conforming to RFC 4627 (Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” July 2006.) [RFC4627].
  4. The resulting JWE Header MUST be validated to only include parameters and values whose syntax and semantics are both understood and supported.
  5. Verify that the JWE uses a key known to the recipient.
  6. When key agreement is employed, use the key agreement algorithm to compute the value of the agreed upon key. When key agreement without key wrapping is employed, let the Content Master Key (CMK) be the agreed upon key. When key agreement with key wrapping is employed, the agreed upon key will be used to decrypt the JWE Encrypted Key.
  7. When key wrapping, key encryption, or key agreement with key wrapping are employed, decrypt the JWE Encrypted Key to produce the Content Master Key (CMK). The CMK MUST have a length equal to that required for the block encryption algorithm.
  8. When direct encryption with a shared symmetric key is employed, let the Content Master Key (CMK) be the shared key.
  9. Let the "additional authenticated data" value be the bytes of the ASCII representation of the concatenation of the Encoded JWE Header, a period ('.') character, the Encoded JWE Encrypted Key, a second period character ('.'), and the Encoded JWE Initialization Vector.
  10. Decrypt the JWE Ciphertext using the CMK, the JWE Initialization Vector, the "additional authenticated data" value, and the JWE Integrity Value (which is the "authentication tag" input to the calculation) using the specified block encryption algorithm, returning the decrypted plaintext and verifying the JWE Integrity Value in the manner specified for the algorithm, rejecting the input without emitting any decrypted output if the JWE Integrity Value is incorrect.
  11. Uncompress the decrypted plaintext if a zip parameter was included.
  12. Output the resulting Plaintext.



 TOC 

5.3.  String Comparison Rules

Processing a JWE inevitably requires comparing known strings to values in JSON objects. For example, in checking what the encryption method is, the Unicode string encoding enc will be checked against the member names in the JWE Header to see if there is a matching Header Parameter Name.

Comparisons between JSON strings and other Unicode strings MUST be performed by comparing Unicode code points without normalization as specified in the String Comparison Rules in Section 5.3 of [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” December 2012.).



 TOC 

6.  Encrypting JWEs with Cryptographic Algorithms

JWE uses cryptographic algorithms to encrypt the Plaintext and the Content Encryption Key (CMK) and to provide integrity protection for the JWE Header, JWE Encrypted Key, and JWE Ciphertext. The JSON Web Algorithms (JWA) [JWA] (Jones, M., “JSON Web Algorithms (JWA),” December 2012.) specification specifies a set of cryptographic algorithms and identifiers to be used with this specification and defines registries for additional such algorithms. Specifically, Section 4.1 specifies a set of alg (algorithm) header parameter values and Section 4.2 specifies a set of enc (encryption method) header parameter values intended for use this specification. It also describes the semantics and operations that are specific to these algorithms.

Public keys employed for encryption can be identified using the Header Parameter methods described in Section 4.1 (Reserved Header Parameter Names) or can be distributed using methods that are outside the scope of this specification.



 TOC 

6.1.  CMK Encryption

JWE supports three forms of Content Master Key (CMK) encryption:

See the algorithms registered for enc usage in the IANA JSON Web Signature and Encryption Algorithms registry [JWA] (Jones, M., “JSON Web Algorithms (JWA),” December 2012.) and Section 4.1 of the JSON Web Algorithms (JWA) [JWA] (Jones, M., “JSON Web Algorithms (JWA),” December 2012.) specification for lists of encryption algorithms that can be used for CMK encryption.



 TOC 

7.  IANA Considerations



 TOC 

7.1.  Registration of JWE Header Parameter Names

This specification registers the Header Parameter Names defined in Section 4.1 (Reserved Header Parameter Names) in the IANA JSON Web Signature and Encryption Header Parameters registry [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” December 2012.).



 TOC 

7.1.1.  Registry Contents



 TOC 

7.2.  JSON Web Signature and Encryption Type Values Registration



 TOC 

7.2.1.  Registry Contents

This specification registers the JWE type value in the IANA JSON Web Signature and Encryption Type Values registry [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” December 2012.):



 TOC 

7.3.  Media Type Registration



 TOC 

7.3.1.  Registry Contents

This specification registers the application/jwe Media Type [RFC2046] (Freed, N. and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types,” November 1996.) in the MIME Media Type registry [RFC4288] (Freed, N. and J. Klensin, “Media Type Specifications and Registration Procedures,” December 2005.) to indicate that the content is a JWE using the Compact Serialization.



 TOC 

8.  Security Considerations

All of the security issues faced by any cryptographic application must be faced by a JWS/JWE/JWK agent. Among these issues are protecting the user's private and symmetric keys, preventing various attacks, and helping the user avoid mistakes such as inadvertently encrypting a message for the wrong recipient. The entire list of security considerations is beyond the scope of this document.

All the security considerations in the JWS specification also apply to this specification. Likewise, all the security considerations in XML Encryption 1.1 (Eastlake, D., Reagle, J., Roessler, T., and F. Hirsch, “XML Encryption Syntax and Processing Version 1.1,” March 2012.) [W3C.CR‑xmlenc‑core1‑20120313] also apply to JWE, other than those that are XML specific.



 TOC 

9.  References



 TOC 

9.1. Normative References

[ITU.X690.1994] International Telecommunications Union, “Information Technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER),” ITU-T Recommendation X.690, 1994.
[JWA] Jones, M., “JSON Web Algorithms (JWA),” draft-ietf-jose-json-web-algorithms (work in progress), December 2012 (HTML).
[JWK] Jones, M., “JSON Web Key (JWK),” draft-ietf-jose-json-web-key (work in progress), December 2012 (HTML).
[JWS] Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” draft-ietf-jose-json-web-signature (work in progress), December 2012 (HTML).
[RFC1421] Linn, J., “Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and Authentication Procedures,” RFC 1421, February 1993 (TXT).
[RFC1951] Deutsch, P., “DEFLATE Compressed Data Format Specification version 1.3,” RFC 1951, May 1996 (TXT, PS, PDF).
[RFC2046] Freed, N. and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types,” RFC 2046, November 1996 (TXT).
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT, HTML, XML).
[RFC2818] Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000 (TXT).
[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63, RFC 3629, November 2003 (TXT).
[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,” STD 66, RFC 3986, January 2005 (TXT, HTML, XML).
[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, “Randomness Requirements for Security,” BCP 106, RFC 4086, June 2005 (TXT).
[RFC4288] Freed, N. and J. Klensin, “Media Type Specifications and Registration Procedures,” BCP 13, RFC 4288, December 2005 (TXT).
[RFC4627] Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” RFC 4627, July 2006 (TXT).
[RFC4648] Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” RFC 4648, October 2006 (TXT).
[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246, August 2008 (TXT).
[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” RFC 5280, May 2008 (TXT).
[W3C.CR-xmlenc-core1-20120313] Eastlake, D., Reagle, J., Roessler, T., and F. Hirsch, “XML Encryption Syntax and Processing Version 1.1,” World Wide Web Consortium CR CR-xmlenc-core1-20120313, March 2012 (HTML).


 TOC 

9.2. Informative References

[I-D.rescorla-jsms] Rescorla, E. and J. Hildebrand, “JavaScript Message Security Format,” draft-rescorla-jsms-00 (work in progress), March 2011 (TXT).
[JSE] Bradley, J. and N. Sakimura (editor), “JSON Simple Encryption,” September 2010.
[JWE-JS] Jones, M., “JSON Web Encryption JSON Serialization (JWE-JS),” draft-jones-jose-jwe-json-serialization (work in progress), December 2012 (HTML).
[RFC4122] Leach, P., Mealling, M., and R. Salz, “A Universally Unique IDentifier (UUID) URN Namespace,” RFC 4122, July 2005 (TXT, HTML, XML).
[RFC5652] Housley, R., “Cryptographic Message Syntax (CMS),” STD 70, RFC 5652, September 2009 (TXT).


 TOC 

Appendix A.  JWE Examples

This section provides examples of JWE computations.



 TOC 

A.1.  Example JWE using RSAES OAEP and AES GCM

This example encrypts the plaintext "Live long and prosper." to the recipient using RSAES OAEP and AES GCM. The AES GCM algorithm has an integrated integrity check. The representation of this plaintext is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32, 112, 114, 111, 115, 112, 101, 114, 46]



 TOC 

A.1.1.  JWE Header

The following example JWE Header declares that:

  {"alg":"RSA-OAEP","enc":"A256GCM"}


 TOC 

A.1.2.  Encoded JWE Header

Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this Encoded JWE Header value:

  eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ


 TOC 

A.1.3.  Content Master Key (CMK)

Generate a 256 bit random Content Master Key (CMK). In this example, the value is:

[177, 161, 244, 128, 84, 143, 225, 115, 63, 180, 3, 255, 107, 154, 212, 246, 138, 7, 110, 91, 112, 46, 34, 105, 47, 130, 203, 46, 122, 234, 64, 252]



 TOC 

A.1.4.  Key Encryption

Encrypt the CMK with the recipient's public key using the RSAES OAEP algorithm to produce the JWE Encrypted Key. In this example, the RSA key parameters are:

Parameter NameValue
Modulus [161, 168, 84, 34, 133, 176, 208, 173, 46, 176, 163, 110, 57, 30, 135, 227, 9, 31, 226, 128, 84, 92, 116, 241, 70, 248, 27, 227, 193, 62, 5, 91, 241, 145, 224, 205, 141, 176, 184, 133, 239, 43, 81, 103, 9, 161, 153, 157, 179, 104, 123, 51, 189, 34, 152, 69, 97, 69, 78, 93, 140, 131, 87, 182, 169, 101, 92, 142, 3, 22, 167, 8, 212, 56, 35, 79, 210, 222, 192, 208, 252, 49, 109, 138, 173, 253, 210, 166, 201, 63, 102, 74, 5, 158, 41, 90, 144, 108, 160, 79, 10, 89, 222, 231, 172, 31, 227, 197, 0, 19, 72, 81, 138, 78, 136, 221, 121, 118, 196, 17, 146, 10, 244, 188, 72, 113, 55, 221, 162, 217, 171, 27, 57, 233, 210, 101, 236, 154, 199, 56, 138, 239, 101, 48, 198, 186, 202, 160, 76, 111, 234, 71, 57, 183, 5, 211, 171, 136, 126, 64, 40, 75, 58, 89, 244, 254, 107, 84, 103, 7, 236, 69, 163, 18, 180, 251, 58, 153, 46, 151, 174, 12, 103, 197, 181, 161, 162, 55, 250, 235, 123, 110, 17, 11, 158, 24, 47, 133, 8, 199, 235, 107, 126, 130, 246, 73, 195, 20, 108, 202, 176, 214, 187, 45, 146, 182, 118, 54, 32, 200, 61, 201, 71, 243, 1, 255, 131, 84, 37, 111, 211, 168, 228, 45, 192, 118, 27, 197, 235, 232, 36, 10, 230, 248, 190, 82, 182, 140, 35, 204, 108, 190, 253, 186, 186, 27]
Exponent [1, 0, 1]
Private Exponent [144, 183, 109, 34, 62, 134, 108, 57, 44, 252, 10, 66, 73, 54, 16, 181, 233, 92, 54, 219, 101, 42, 35, 178, 63, 51, 43, 92, 119, 136, 251, 41, 53, 23, 191, 164, 164, 60, 88, 227, 229, 152, 228, 213, 149, 228, 169, 237, 104, 71, 151, 75, 88, 252, 216, 77, 251, 231, 28, 97, 88, 193, 215, 202, 248, 216, 121, 195, 211, 245, 250, 112, 71, 243, 61, 129, 95, 39, 244, 122, 225, 217, 169, 211, 165, 48, 253, 220, 59, 122, 219, 42, 86, 223, 32, 236, 39, 48, 103, 78, 122, 216, 187, 88, 176, 89, 24, 1, 42, 177, 24, 99, 142, 170, 1, 146, 43, 3, 108, 64, 194, 121, 182, 95, 187, 134, 71, 88, 96, 134, 74, 131, 167, 69, 106, 143, 121, 27, 72, 44, 245, 95, 39, 194, 179, 175, 203, 122, 16, 112, 183, 17, 200, 202, 31, 17, 138, 156, 184, 210, 157, 184, 154, 131, 128, 110, 12, 85, 195, 122, 241, 79, 251, 229, 183, 117, 21, 123, 133, 142, 220, 153, 9, 59, 57, 105, 81, 255, 138, 77, 82, 54, 62, 216, 38, 249, 208, 17, 197, 49, 45, 19, 232, 157, 251, 131, 137, 175, 72, 126, 43, 229, 69, 179, 117, 82, 157, 213, 83, 35, 57, 210, 197, 252, 171, 143, 194, 11, 47, 163, 6, 253, 75, 252, 96, 11, 187, 84, 130, 210, 7, 121, 78, 91, 79, 57, 251, 138, 132, 220, 60, 224, 173, 56, 224, 201]

The resulting JWE Encrypted Key value is:

[51, 101, 241, 165, 179, 145, 41, 236, 202, 75, 60, 208, 47, 255, 121, 248, 104, 226, 185, 212, 65, 78, 169, 255, 162, 100, 188, 207, 220, 96, 161, 22, 251, 47, 66, 112, 229, 75, 4, 111, 25, 173, 200, 121, 246, 79, 189, 102, 173, 146, 228, 142, 14, 12, 167, 200, 27, 133, 138, 37, 180, 249, 4, 56, 123, 192, 162, 156, 246, 231, 235, 217, 240, 45, 158, 213, 195, 154, 2, 142, 86, 61, 198, 210, 34, 225, 92, 7, 128, 227, 4, 227, 55, 183, 69, 0, 59, 162, 71, 145, 98, 238, 0, 70, 40, 123, 159, 37, 115, 18, 16, 157, 236, 138, 117, 166, 18, 45, 181, 125, 112, 170, 168, 82, 129, 80, 166, 242, 150, 97, 17, 217, 109, 251, 51, 35, 39, 236, 107, 95, 43, 154, 4, 227, 206, 187, 75, 13, 51, 231, 115, 79, 67, 72, 145, 54, 225, 164, 60, 195, 120, 188, 69, 113, 3, 182, 21, 189, 79, 82, 122, 46, 196, 199, 254, 252, 7, 119, 5, 32, 144, 143, 173, 11, 99, 205, 120, 106, 231, 51, 231, 77, 73, 252, 197, 221, 142, 254, 151, 7, 6, 203, 65, 108, 117, 121, 15, 95, 43, 111, 13, 94, 242, 226, 150, 94, 121, 72, 144, 251, 69, 93, 137, 178, 13, 216, 8, 227, 125, 110, 180, 157, 250, 207, 184, 232, 222, 164, 193, 70, 232, 16, 65, 109, 29, 251, 164, 119, 50, 205, 236, 109, 245, 234, 78, 1]



 TOC 

A.1.5.  Encoded JWE Encrypted Key

Base64url encode the JWE Encrypted Key to produce the Encoded JWE Encrypted Key. This result (with line breaks for display purposes only) is:

  M2XxpbORKezKSzzQL_95-GjiudRBTqn_omS8z9xgoRb7L0Jw5UsEbxmtyHn2T71m
  rZLkjg4Mp8gbhYoltPkEOHvAopz25-vZ8C2e1cOaAo5WPcbSIuFcB4DjBOM3t0UA
  O6JHkWLuAEYoe58lcxIQneyKdaYSLbV9cKqoUoFQpvKWYRHZbfszIyfsa18rmgTj
  zrtLDTPnc09DSJE24aQ8w3i8RXEDthW9T1J6LsTH_vwHdwUgkI-tC2PNeGrnM-dN
  SfzF3Y7-lwcGy0FsdXkPXytvDV7y4pZeeUiQ-0VdibIN2AjjfW60nfrPuOjepMFG
  6BBBbR37pHcyzext9epOAQ


 TOC 

A.1.6.  Initialization Vector

Generate a random 96 bit JWE Initialization Vector. In this example, the value is:

[227, 197, 117, 252, 2, 219, 233, 68, 180, 225, 77, 219]

Base64url encoding this value yields the Encoded JWE Initialization Vector value:

  48V1_ALb6US04U3b


 TOC 

A.1.7.  "Additional Authenticated Data" Parameter

Concatenate the Encoded JWE Header value, a period character ('.'), the Encoded JWE Encrypted Key, a second period character ('.'), and the Encoded JWE Initialization Vector to create the "additional authenticated data" parameter for the AES GCM algorithm. This result (with line breaks for display purposes only) is:

  eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ.
  M2XxpbORKezKSzzQL_95-GjiudRBTqn_omS8z9xgoRb7L0Jw5UsEbxmtyHn2T71m
  rZLkjg4Mp8gbhYoltPkEOHvAopz25-vZ8C2e1cOaAo5WPcbSIuFcB4DjBOM3t0UA
  O6JHkWLuAEYoe58lcxIQneyKdaYSLbV9cKqoUoFQpvKWYRHZbfszIyfsa18rmgTj
  zrtLDTPnc09DSJE24aQ8w3i8RXEDthW9T1J6LsTH_vwHdwUgkI-tC2PNeGrnM-dN
  SfzF3Y7-lwcGy0FsdXkPXytvDV7y4pZeeUiQ-0VdibIN2AjjfW60nfrPuOjepMFG
  6BBBbR37pHcyzext9epOAQ.
  48V1_ALb6US04U3b

The representation of this value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69, 116, 84, 48, 70, 70, 85, 67, 73, 115, 73, 109, 86, 117, 89, 121, 73, 54, 73, 107, 69, 121, 78, 84, 90, 72, 81, 48, 48, 105, 102, 81, 46, 77, 50, 88, 120, 112, 98, 79, 82, 75, 101, 122, 75, 83, 122, 122, 81, 76, 95, 57, 53, 45, 71, 106, 105, 117, 100, 82, 66, 84, 113, 110, 95, 111, 109, 83, 56, 122, 57, 120, 103, 111, 82, 98, 55, 76, 48, 74, 119, 53, 85, 115, 69, 98, 120, 109, 116, 121, 72, 110, 50, 84, 55, 49, 109, 114, 90, 76, 107, 106, 103, 52, 77, 112, 56, 103, 98, 104, 89, 111, 108, 116, 80, 107, 69, 79, 72, 118, 65, 111, 112, 122, 50, 53, 45, 118, 90, 56, 67, 50, 101, 49, 99, 79, 97, 65, 111, 53, 87, 80, 99, 98, 83, 73, 117, 70, 99, 66, 52, 68, 106, 66, 79, 77, 51, 116, 48, 85, 65, 79, 54, 74, 72, 107, 87, 76, 117, 65, 69, 89, 111, 101, 53, 56, 108, 99, 120, 73, 81, 110, 101, 121, 75, 100, 97, 89, 83, 76, 98, 86, 57, 99, 75, 113, 111, 85, 111, 70, 81, 112, 118, 75, 87, 89, 82, 72, 90, 98, 102, 115, 122, 73, 121, 102, 115, 97, 49, 56, 114, 109, 103, 84, 106, 122, 114, 116, 76, 68, 84, 80, 110, 99, 48, 57, 68, 83, 74, 69, 50, 52, 97, 81, 56, 119, 51, 105, 56, 82, 88, 69, 68, 116, 104, 87, 57, 84, 49, 74, 54, 76, 115, 84, 72, 95, 118, 119, 72, 100, 119, 85, 103, 107, 73, 45, 116, 67, 50, 80, 78, 101, 71, 114, 110, 77, 45, 100, 78, 83, 102, 122, 70, 51, 89, 55, 45, 108, 119, 99, 71, 121, 48, 70, 115, 100, 88, 107, 80, 88, 121, 116, 118, 68, 86, 55, 121, 52, 112, 90, 101, 101, 85, 105, 81, 45, 48, 86, 100, 105, 98, 73, 78, 50, 65, 106, 106, 102, 87, 54, 48, 110, 102, 114, 80, 117, 79, 106, 101, 112, 77, 70, 71, 54, 66, 66, 66, 98, 82, 51, 55, 112, 72, 99, 121, 122, 101, 120, 116, 57, 101, 112, 79, 65, 81, 46, 52, 56, 86, 49, 95, 65, 76, 98, 54, 85, 83, 48, 52, 85, 51, 98]



 TOC 

A.1.8.  Plaintext Encryption

Encrypt the Plaintext with AES GCM using the CMK as the encryption key, the JWE Initialization Vector, and the "additional authenticated data" value above, requesting a 128 bit "authentication tag" output. The resulting Ciphertext is:

[253, 237, 181, 180, 97, 161, 105, 207, 233, 120, 65, 100, 45, 122, 246, 116, 195, 212, 102, 37, 36, 175]

The resulting "authentication tag" value is:

[237, 94, 89, 14, 74, 52, 191, 249, 159, 216, 240, 28, 224, 147, 34, 82]



 TOC 

A.1.9.  Encoded JWE Ciphertext

Base64url encode the resulting Ciphertext to create the Encoded JWE Ciphertext. This result is:

  _e21tGGhac_peEFkLXr2dMPUZiUkrw


 TOC 

A.1.10.  Encoded JWE Integrity Value

Base64url encode the resulting "authentication tag" to create the Encoded JWE Integrity Value. This result is:

  7V5ZDko0v_mf2PAc4JMiUg


 TOC 

A.1.11.  Complete Representation

Assemble the final representation: The Compact Serialization of this result is the concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE Integrity Value in that order, with the five strings being separated by four period ('.') characters.

The final result in this example (with line breaks for display purposes only) is:

  eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ.
  M2XxpbORKezKSzzQL_95-GjiudRBTqn_omS8z9xgoRb7L0Jw5UsEbxmtyHn2T71m
  rZLkjg4Mp8gbhYoltPkEOHvAopz25-vZ8C2e1cOaAo5WPcbSIuFcB4DjBOM3t0UA
  O6JHkWLuAEYoe58lcxIQneyKdaYSLbV9cKqoUoFQpvKWYRHZbfszIyfsa18rmgTj
  zrtLDTPnc09DSJE24aQ8w3i8RXEDthW9T1J6LsTH_vwHdwUgkI-tC2PNeGrnM-dN
  SfzF3Y7-lwcGy0FsdXkPXytvDV7y4pZeeUiQ-0VdibIN2AjjfW60nfrPuOjepMFG
  6BBBbR37pHcyzext9epOAQ.
  48V1_ALb6US04U3b.
  _e21tGGhac_peEFkLXr2dMPUZiUkrw.
  7V5ZDko0v_mf2PAc4JMiUg


 TOC 

A.1.12.  Validation

This example illustrates the process of creating a JWE with an Authenticated Encryption algorithm. These results can be used to validate JWE decryption implementations for these algorithms. Note that since the RSAES OAEP computation includes random values, the encryption results above will not be completely reproducible. However, since the AES GCM computation is deterministic, the JWE Encrypted Ciphertext values will be the same for all encryptions performed using these inputs.



 TOC 

A.2.  Example JWE using RSAES-PKCS1-V1_5 and AES CBC

This example encrypts the plaintext "No matter where you go, there you are." to the recipient using RSAES-PKCS1-V1_5 and AES CBC. AES CBC does not have an integrated integrity check, so a separate integrity check calculation is performed using HMAC SHA-256, with separate encryption and integrity keys being derived from a master key using the Concat KDF with the SHA-256 digest function. The representation of this plaintext is:

[78, 111, 32, 109, 97, 116, 116, 101, 114, 32, 119, 104, 101, 114, 101, 32, 121, 111, 117, 32, 103, 111, 44, 32, 116, 104, 101, 114, 101, 32, 121, 111, 117, 32, 97, 114, 101, 46]



 TOC 

A.2.1.  JWE Header

The following example JWE Header (with line breaks for display purposes only) declares that:

  {"alg":"RSA1_5","enc":"A128CBC+HS256"}


 TOC 

A.2.2.  Encoded JWE Header

Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this Encoded JWE Header value:

  eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDK0hTMjU2In0


 TOC 

A.2.3.  Content Master Key (CMK)

Generate a 256 bit random Content Master Key (CMK). In this example, the key value is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]



 TOC 

A.2.4.  Key Encryption

Encrypt the CMK with the recipient's public key using the RSAES-PKCS1-V1_5 algorithm to produce the JWE Encrypted Key. In this example, the RSA key parameters are:

Parameter NameValue
Modulus [177, 119, 33, 13, 164, 30, 108, 121, 207, 136, 107, 242, 12, 224, 19, 226, 198, 134, 17, 71, 173, 75, 42, 61, 48, 162, 206, 161, 97, 108, 185, 234, 226, 219, 118, 206, 118, 5, 169, 224, 60, 181, 90, 85, 51, 123, 6, 224, 4, 122, 29, 230, 151, 12, 244, 127, 121, 25, 4, 85, 220, 144, 215, 110, 130, 17, 68, 228, 129, 138, 7, 130, 231, 40, 212, 214, 17, 179, 28, 124, 151, 178, 207, 20, 14, 154, 222, 113, 176, 24, 198, 73, 211, 113, 9, 33, 178, 80, 13, 25, 21, 25, 153, 212, 206, 67, 154, 147, 70, 194, 192, 183, 160, 83, 98, 236, 175, 85, 23, 97, 75, 199, 177, 73, 145, 50, 253, 206, 32, 179, 254, 236, 190, 82, 73, 67, 129, 253, 252, 220, 108, 136, 138, 11, 192, 1, 36, 239, 228, 55, 81, 113, 17, 25, 140, 63, 239, 146, 3, 172, 96, 60, 227, 233, 64, 255, 224, 173, 225, 228, 229, 92, 112, 72, 99, 97, 26, 87, 187, 123, 46, 50, 90, 202, 117, 73, 10, 153, 47, 224, 178, 163, 77, 48, 46, 154, 33, 148, 34, 228, 33, 172, 216, 89, 46, 225, 127, 68, 146, 234, 30, 147, 54, 146, 5, 133, 45, 78, 254, 85, 55, 75, 213, 86, 194, 218, 215, 163, 189, 194, 54, 6, 83, 36, 18, 153, 53, 7, 48, 89, 35, 66, 144, 7, 65, 154, 13, 97, 75, 55, 230, 132, 3, 13, 239, 71]
Exponent [1, 0, 1]
Private Exponent [84, 80, 150, 58, 165, 235, 242, 123, 217, 55, 38, 154, 36, 181, 221, 156, 211, 215, 100, 164, 90, 88, 40, 228, 83, 148, 54, 122, 4, 16, 165, 48, 76, 194, 26, 107, 51, 53, 179, 165, 31, 18, 198, 173, 78, 61, 56, 97, 252, 158, 140, 80, 63, 25, 223, 156, 36, 203, 214, 252, 120, 67, 180, 167, 3, 82, 243, 25, 97, 214, 83, 133, 69, 16, 104, 54, 160, 200, 41, 83, 164, 187, 70, 153, 111, 234, 242, 158, 175, 28, 198, 48, 211, 45, 148, 58, 23, 62, 227, 74, 52, 117, 42, 90, 41, 249, 130, 154, 80, 119, 61, 26, 193, 40, 125, 10, 152, 174, 227, 225, 205, 32, 62, 66, 6, 163, 100, 99, 219, 19, 253, 25, 105, 80, 201, 29, 252, 157, 237, 69, 1, 80, 171, 167, 20, 196, 156, 109, 249, 88, 0, 3, 152, 38, 165, 72, 87, 6, 152, 71, 156, 214, 16, 71, 30, 82, 51, 103, 76, 218, 63, 9, 84, 163, 249, 91, 215, 44, 238, 85, 101, 240, 148, 1, 82, 224, 91, 135, 105, 127, 84, 171, 181, 152, 210, 183, 126, 24, 46, 196, 90, 173, 38, 245, 219, 186, 222, 27, 240, 212, 194, 15, 66, 135, 226, 178, 190, 52, 245, 74, 65, 224, 81, 100, 85, 25, 204, 165, 203, 187, 175, 84, 100, 82, 15, 11, 23, 202, 151, 107, 54, 41, 207, 3, 136, 229, 134, 131, 93, 139, 50, 182, 204, 93, 130, 89]

The resulting JWE Encrypted Key value is:

[102, 105, 229, 169, 104, 35, 95, 42, 176, 142, 190, 220, 92, 124, 172, 240, 94, 253, 106, 114, 20, 35, 162, 118, 81, 103, 64, 201, 20, 4, 112, 96, 84, 248, 163, 199, 177, 227, 204, 247, 93, 63, 70, 132, 195, 26, 237, 72, 91, 141, 3, 159, 71, 111, 113, 213, 68, 142, 146, 92, 60, 243, 72, 111, 53, 156, 51, 16, 226, 215, 125, 68, 141, 232, 62, 111, 197, 98, 91, 150, 23, 230, 132, 93, 97, 216, 145, 226, 3, 18, 12, 48, 119, 153, 185, 8, 156, 195, 84, 21, 63, 143, 43, 144, 174, 101, 25, 199, 7, 106, 212, 43, 151, 225, 62, 225, 122, 92, 90, 139, 45, 144, 134, 229, 15, 235, 38, 110, 132, 189, 236, 126, 92, 183, 13, 64, 2, 77, 107, 95, 186, 8, 133, 53, 217, 104, 247, 152, 241, 49, 199, 15, 111, 110, 123, 16, 13, 78, 193, 224, 23, 230, 133, 220, 162, 126, 82, 192, 236, 7, 185, 100, 106, 21, 70, 93, 192, 255, 252, 139, 61, 124, 81, 140, 113, 97, 164, 231, 131, 167, 246, 157, 199, 195, 114, 122, 49, 121, 115, 63, 114, 12, 165, 11, 186, 3, 108, 12, 199, 101, 29, 226, 80, 56, 193, 149, 45, 134, 146, 102, 221, 202, 63, 166, 150, 53, 42, 133, 3, 83, 199, 14, 15, 181, 209, 199, 174, 76, 75, 106, 254, 243, 196, 227, 225, 173, 122, 254, 13, 224, 174, 4, 185, 217, 99, 225]



 TOC 

A.2.5.  Encoded JWE Encrypted Key

Base64url encode the JWE Encrypted Key to produce the Encoded JWE Encrypted Key. This result (with line breaks for display purposes only) is:

  ZmnlqWgjXyqwjr7cXHys8F79anIUI6J2UWdAyRQEcGBU-KPHsePM910_RoTDGu1I
  W40Dn0dvcdVEjpJcPPNIbzWcMxDi131Ejeg-b8ViW5YX5oRdYdiR4gMSDDB3mbkI
  nMNUFT-PK5CuZRnHB2rUK5fhPuF6XFqLLZCG5Q_rJm6Evex-XLcNQAJNa1-6CIU1
  2Wj3mPExxw9vbnsQDU7B4BfmhdyiflLA7Ae5ZGoVRl3A__yLPXxRjHFhpOeDp_ad
  x8NyejF5cz9yDKULugNsDMdlHeJQOMGVLYaSZt3KP6aWNSqFA1PHDg-10ceuTEtq
  _vPE4-Gtev4N4K4Eudlj4Q


 TOC 

A.2.6.  Key Derivation

Use the Concat key derivation function to derive Content Encryption Key (CEK) and Content Integrity Key (CIK) values from the CMK. The details of this derivation are shown in Appendix A.4 (Example Key Derivation for "enc" value "A128CBC+HS256"). The resulting CEK value is:

[203, 165, 180, 113, 62, 195, 22, 98, 91, 153, 210, 38, 112, 35, 230, 236]

The resulting CIK value is:

[218, 24, 160, 17, 160, 50, 235, 35, 216, 209, 100, 174, 155, 163, 10, 117, 180, 111, 172, 200, 127, 201, 206, 173, 40, 45, 58, 170, 35, 93, 9, 60]



 TOC 

A.2.7.  Initialization Vector

Generate a random 128 bit JWE Initialization Vector. In this example, the value is:

[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104, 101]

Base64url encoding this value yields the Encoded JWE Initialization Vector value:

  AxY8DCtDaGlsbGljb3RoZQ


 TOC 

A.2.8.  Plaintext Encryption

Encrypt the Plaintext with AES CBC using the CEK and the JWE Initialization Vector to produce the Ciphertext. The resulting Ciphertext is:

[71, 27, 35, 131, 163, 200, 19, 23, 38, 25, 33, 123, 46, 116, 132, 144, 58, 150, 32, 167, 192, 195, 92, 25, 207, 101, 233, 105, 181, 121, 63, 4, 44, 162, 82, 176, 17, 171, 150, 97, 147, 68, 245, 13, 97, 100, 145, 25]



 TOC 

A.2.9.  Encoded JWE Ciphertext

Base64url encode the resulting Ciphertext to create the Encoded JWE Ciphertext. This result is:

  Rxsjg6PIExcmGSF7LnSEkDqWIKfAw1wZz2XpabV5PwQsolKwEauWYZNE9Q1hZJEZ


 TOC 

A.2.10.  Secured Input Value

Concatenate the Encoded JWE Header value, a period character ('.'), the Encoded JWE Encrypted Key, a second period character, the Encoded JWE Initialization Vector, a third period ('.') character, and the Encoded JWE Ciphertext to create the value to integrity protect. This result (with line breaks for display purposes only) is:

  eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDK0hTMjU2In0.
  ZmnlqWgjXyqwjr7cXHys8F79anIUI6J2UWdAyRQEcGBU-KPHsePM910_RoTDGu1I
  W40Dn0dvcdVEjpJcPPNIbzWcMxDi131Ejeg-b8ViW5YX5oRdYdiR4gMSDDB3mbkI
  nMNUFT-PK5CuZRnHB2rUK5fhPuF6XFqLLZCG5Q_rJm6Evex-XLcNQAJNa1-6CIU1
  2Wj3mPExxw9vbnsQDU7B4BfmhdyiflLA7Ae5ZGoVRl3A__yLPXxRjHFhpOeDp_ad
  x8NyejF5cz9yDKULugNsDMdlHeJQOMGVLYaSZt3KP6aWNSqFA1PHDg-10ceuTEtq
  _vPE4-Gtev4N4K4Eudlj4Q.
  AxY8DCtDaGlsbGljb3RoZQ.
  Rxsjg6PIExcmGSF7LnSEkDqWIKfAw1wZz2XpabV5PwQsolKwEauWYZNE9Q1hZJEZ

The representation of this value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69, 120, 88, 122, 85, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 75, 48, 104, 84, 77, 106, 85, 50, 73, 110, 48, 46, 90, 109, 110, 108, 113, 87, 103, 106, 88, 121, 113, 119, 106, 114, 55, 99, 88, 72, 121, 115, 56, 70, 55, 57, 97, 110, 73, 85, 73, 54, 74, 50, 85, 87, 100, 65, 121, 82, 81, 69, 99, 71, 66, 85, 45, 75, 80, 72, 115, 101, 80, 77, 57, 49, 48, 95, 82, 111, 84, 68, 71, 117, 49, 73, 87, 52, 48, 68, 110, 48, 100, 118, 99, 100, 86, 69, 106, 112, 74, 99, 80, 80, 78, 73, 98, 122, 87, 99, 77, 120, 68, 105, 49, 51, 49, 69, 106, 101, 103, 45, 98, 56, 86, 105, 87, 53, 89, 88, 53, 111, 82, 100, 89, 100, 105, 82, 52, 103, 77, 83, 68, 68, 66, 51, 109, 98, 107, 73, 110, 77, 78, 85, 70, 84, 45, 80, 75, 53, 67, 117, 90, 82, 110, 72, 66, 50, 114, 85, 75, 53, 102, 104, 80, 117, 70, 54, 88, 70, 113, 76, 76, 90, 67, 71, 53, 81, 95, 114, 74, 109, 54, 69, 118, 101, 120, 45, 88, 76, 99, 78, 81, 65, 74, 78, 97, 49, 45, 54, 67, 73, 85, 49, 50, 87, 106, 51, 109, 80, 69, 120, 120, 119, 57, 118, 98, 110, 115, 81, 68, 85, 55, 66, 52, 66, 102, 109, 104, 100, 121, 105, 102, 108, 76, 65, 55, 65, 101, 53, 90, 71, 111, 86, 82, 108, 51, 65, 95, 95, 121, 76, 80, 88, 120, 82, 106, 72, 70, 104, 112, 79, 101, 68, 112, 95, 97, 100, 120, 56, 78, 121, 101, 106, 70, 53, 99, 122, 57, 121, 68, 75, 85, 76, 117, 103, 78, 115, 68, 77, 100, 108, 72, 101, 74, 81, 79, 77, 71, 86, 76, 89, 97, 83, 90, 116, 51, 75, 80, 54, 97, 87, 78, 83, 113, 70, 65, 49, 80, 72, 68, 103, 45, 49, 48, 99, 101, 117, 84, 69, 116, 113, 95, 118, 80, 69, 52, 45, 71, 116, 101, 118, 52, 78, 52, 75, 52, 69, 117, 100, 108, 106, 52, 81, 46, 65, 120, 89, 56, 68, 67, 116, 68, 97, 71, 108, 115, 98, 71, 108, 106, 98, 51, 82, 111, 90, 81, 46, 82, 120, 115, 106, 103, 54, 80, 73, 69, 120, 99, 109, 71, 83, 70, 55, 76, 110, 83, 69, 107, 68, 113, 87, 73, 75, 102, 65, 119, 49, 119, 90, 122, 50, 88, 112, 97, 98, 86, 53, 80, 119, 81, 115, 111, 108, 75, 119, 69, 97, 117, 87, 89, 90, 78, 69, 57, 81, 49, 104, 90, 74, 69, 90]



 TOC 

A.2.11.  JWE Integrity Value

Compute the HMAC SHA-256 of this value using the CIK to create the JWE Integrity Value. This result is:

[240, 181, 234, 49, 221, 9, 44, 107, 49, 49, 160, 121, 186, 131, 90, 50, 152, 59, 185, 69, 191, 167, 141, 17, 149, 166, 71, 11, 3, 8, 203, 57]



 TOC 

A.2.12.  Encoded JWE Integrity Value

Base64url encode the resulting JWE Integrity Value to create the Encoded JWE Integrity Value. This result is:

  8LXqMd0JLGsxMaB5uoNaMpg7uUW_p40RlaZHCwMIyzk


 TOC 

A.2.13.  Complete Representation

Assemble the final representation: The Compact Serialization of this result is the concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE Integrity Value in that order, with the five strings being separated by four period ('.') characters.

The final result in this example (with line breaks for display purposes only) is:

  eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDK0hTMjU2In0.
  ZmnlqWgjXyqwjr7cXHys8F79anIUI6J2UWdAyRQEcGBU-KPHsePM910_RoTDGu1I
  W40Dn0dvcdVEjpJcPPNIbzWcMxDi131Ejeg-b8ViW5YX5oRdYdiR4gMSDDB3mbkI
  nMNUFT-PK5CuZRnHB2rUK5fhPuF6XFqLLZCG5Q_rJm6Evex-XLcNQAJNa1-6CIU1
  2Wj3mPExxw9vbnsQDU7B4BfmhdyiflLA7Ae5ZGoVRl3A__yLPXxRjHFhpOeDp_ad
  x8NyejF5cz9yDKULugNsDMdlHeJQOMGVLYaSZt3KP6aWNSqFA1PHDg-10ceuTEtq
  _vPE4-Gtev4N4K4Eudlj4Q.
  AxY8DCtDaGlsbGljb3RoZQ.
  Rxsjg6PIExcmGSF7LnSEkDqWIKfAw1wZz2XpabV5PwQsolKwEauWYZNE9Q1hZJEZ.
  8LXqMd0JLGsxMaB5uoNaMpg7uUW_p40RlaZHCwMIyzk


 TOC 

A.2.14.  Validation

This example illustrates the process of creating a JWE with a composite Authenticated Encryption algorithm created from a non-Authenticated Encryption algorithm by adding a separate integrity check calculation. These results can be used to validate JWE decryption implementations for these algorithms. Note that since the RSAES-PKCS1-V1_5 computation includes random values, the encryption results above will not be completely reproducible. However, since the AES CBC computation is deterministic, the JWE Encrypted Ciphertext values will be the same for all encryptions performed using these inputs.



 TOC 

A.3.  Example JWE using AES Key Wrap and AES GCM

This example encrypts the plaintext "The true sign of intelligence is not knowledge but imagination." to the recipient using AES Key Wrap and AES GCM. The representation of this plaintext is:

[84, 104, 101, 32, 116, 114, 117, 101, 32, 115, 105, 103, 110, 32, 111, 102, 32, 105, 110, 116, 101, 108, 108, 105, 103, 101, 110, 99, 101, 32, 105, 115, 32, 110, 111, 116, 32, 107, 110, 111, 119, 108, 101, 100, 103, 101, 32, 98, 117, 116, 32, 105, 109, 97, 103, 105, 110, 97, 116, 105, 111, 110, 46]



 TOC 

A.3.1.  JWE Header

The following example JWE Header declares that:

  {"alg":"A128KW","enc":"A128GCM"}


 TOC 

A.3.2.  Encoded JWE Header

Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this Encoded JWE Header value:

  eyJhbGciOiJBMTI4S1ciLCJlbmMiOiJBMTI4R0NNIn0


 TOC 

A.3.3.  Content Master Key (CMK)

Generate a 128 bit random Content Master Key (CMK). In this example, the value is:

[64, 154, 239, 170, 64, 40, 195, 99, 19, 84, 192, 142, 192, 238, 207, 217]



 TOC 

A.3.4.  Key Encryption

Encrypt the CMK with the shared symmetric key using the AES Key Wrap algorithm to produce the JWE Encrypted Key. In this example, the shared symmetric key value is:

[25, 172, 32, 130, 225, 114, 26, 181, 138, 106, 254, 192, 95, 133, 74, 82]

The resulting JWE Encrypted Key value is:

[164, 255, 251, 1, 64, 200, 65, 200, 34, 197, 81, 143, 43, 211, 240, 38, 191, 161, 181, 117, 119, 68, 44, 80]



 TOC 

A.3.5.  Encoded JWE Encrypted Key

Base64url encode the JWE Encrypted Key to produce the Encoded JWE Encrypted Key. This result is:

  pP_7AUDIQcgixVGPK9PwJr-htXV3RCxQ


 TOC 

A.3.6.  Initialization Vector

Generate a random 96 bit JWE Initialization Vector. In this example, the value is:

[253, 220, 80, 25, 166, 152, 178, 168, 97, 99, 67, 89]

Base64url encoding this value yields the Encoded JWE Initialization Vector value:

  _dxQGaaYsqhhY0NZ


 TOC 

A.3.7.  "Additional Authenticated Data" Parameter

Concatenate the Encoded JWE Header value, a period character ('.'), the Encoded JWE Encrypted Key, a second period character ('.'), and the Encoded JWE Initialization Vector to create the "additional authenticated data" parameter for the AES GCM algorithm. This result (with line breaks for display purposes only) is:

  eyJhbGciOiJBMTI4S1ciLCJlbmMiOiJBMTI4R0NNIn0.
  pP_7AUDIQcgixVGPK9PwJr-htXV3RCxQ.
  _dxQGaaYsqhhY0NZ

The representation of this value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52, 83, 49, 99, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 82, 48, 78, 78, 73, 110, 48, 46, 112, 80, 95, 55, 65, 85, 68, 73, 81, 99, 103, 105, 120, 86, 71, 80, 75, 57, 80, 119, 74, 114, 45, 104, 116, 88, 86, 51, 82, 67, 120, 81, 46, 95, 100, 120, 81, 71, 97, 97, 89, 115, 113, 104, 104, 89, 48, 78, 90]



 TOC 

A.3.8.  Plaintext Encryption

Encrypt the Plaintext with AES GCM using the CMK as the encryption key, the JWE Initialization Vector, and the "additional authenticated data" value above, requesting a 128 bit "authentication tag" output. The resulting Ciphertext is:

[227, 12, 89, 132, 185, 16, 248, 93, 145, 87, 53, 130, 95, 115, 62, 104, 138, 96, 109, 71, 124, 211, 165, 103, 202, 99, 21, 193, 4, 226, 84, 229, 254, 106, 144, 241, 39, 86, 148, 132, 160, 104, 88, 232, 228, 109, 85, 7, 86, 80, 134, 106, 166, 24, 92, 199, 210, 188, 153, 187, 218, 69, 227]

The resulting "authentication tag" value is:

[154, 35, 80, 107, 37, 148, 81, 6, 103, 4, 60, 206, 171, 165, 113, 67]



 TOC 

A.3.9.  Encoded JWE Ciphertext

Base64url encode the resulting Ciphertext to create the Encoded JWE Ciphertext. This result (with line breaks for display purposes only) is:

  4wxZhLkQ-F2RVzWCX3M-aIpgbUd806VnymMVwQTiVOX-apDxJ1aUhKBoWOjkbVUH
  VlCGaqYYXMfSvJm72kXj


 TOC 

A.3.10.  Encoded JWE Integrity Value

Base64url encode the resulting "authentication tag" to create the Encoded JWE Integrity Value. This result is:

  miNQayWUUQZnBDzOq6VxQw


 TOC 

A.3.11.  Complete Representation

Assemble the final representation: The Compact Serialization of this result is the concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE Integrity Value in that order, with the five strings being separated by four period ('.') characters.

The final result in this example (with line breaks for display purposes only) is:

  eyJhbGciOiJBMTI4S1ciLCJlbmMiOiJBMTI4R0NNIn0.
  pP_7AUDIQcgixVGPK9PwJr-htXV3RCxQ.
  _dxQGaaYsqhhY0NZ.
  4wxZhLkQ-F2RVzWCX3M-aIpgbUd806VnymMVwQTiVOX-apDxJ1aUhKBoWOjkbVUH
  VlCGaqYYXMfSvJm72kXj.
  miNQayWUUQZnBDzOq6VxQw


 TOC 

A.3.12.  Validation

This example illustrates the process of creating a JWE with symmetric key wrap and an Authenticated Encryption algorithm. These results can be used to validate JWE decryption implementations for these algorithms. Also, since both the AES Key Wrap and AES GCM computations are deterministic, the resulting JWE value will be the same for all encryptions performed using these inputs. Since the computation is reproducible, these results can also be used to validate JWE encryption implementations for these algorithms.



 TOC 

A.4.  Example Key Derivation for "enc" value "A128CBC+HS256"

This example uses the Concat KDF to derive the Content Encryption Key (CEK) and Content Integrity Key (CIK) from the Content Master Key (CMK) in the manner described in Section 4.8.1 of [JWA] (Jones, M., “JSON Web Algorithms (JWA),” December 2012.). In this example, a 256 bit CMK is used to derive a 128 bit CEK and a 256 bit CIK.

The CMK value used is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]



 TOC 

A.4.1.  CEK Generation

These values are concatenated to produce the round 1 hash input:

Thus the round 1 hash input is:

[0, 0, 0, 1, 4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207, 0, 0, 0, 128, 65, 49, 50, 56, 67, 66, 67, 43, 72, 83, 50, 53, 54, 0, 0, 0, 0, 0, 0, 0, 0, 69, 110, 99, 114, 121, 112, 116, 105, 111, 110]

The SHA-256 hash of this value, which is the round 1 hash output, is:

[203, 165, 180, 113, 62, 195, 22, 98, 91, 153, 210, 38, 112, 35, 230, 236, 181, 193, 129, 233, 251, 107, 70, 80, 36, 150, 216, 251, 182, 29, 104, 150]

Given that 128 bits are needed for the CEK and the hash has produced 256 bits, the CEK value is the first 128 bits of that value:

[203, 165, 180, 113, 62, 195, 22, 98, 91, 153, 210, 38, 112, 35, 230, 236]



 TOC 

A.4.2.  CIK Generation

These values are concatenated to produce the round 1 hash input:

Thus the round 1 hash input is:

[0, 0, 0, 1, 4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207, 0, 0, 1, 0, 65, 49, 50, 56, 67, 66, 67, 43, 72, 83, 50, 53, 54, 0, 0, 0, 0, 0, 0, 0, 0, 73, 110, 116, 101, 103, 114, 105, 116, 121]

The SHA-256 hash of this value, which is the round 1 hash output, is:

[218, 24, 160, 17, 160, 50, 235, 35, 216, 209, 100, 174, 155, 163, 10, 117, 180, 111, 172, 200, 127, 201, 206, 173, 40, 45, 58, 170, 35, 93, 9, 60]

Given that 256 bits are needed for the CIK and the hash has produced 256 bits, the CIK value is that same value:

[218, 24, 160, 17, 160, 50, 235, 35, 216, 209, 100, 174, 155, 163, 10, 117, 180, 111, 172, 200, 127, 201, 206, 173, 40, 45, 58, 170, 35, 93, 9, 60]



 TOC 

A.5.  Example Key Derivation for "enc" value "A256CBC+HS512"

This example uses the Concat KDF to derive the Content Encryption Key (CEK) and Content Integrity Key (CIK) from the Content Master Key (CMK) in the manner described in Section 4.8.1 of [JWA] (Jones, M., “JSON Web Algorithms (JWA),” December 2012.). In this example, a 512 bit CMK is used to derive a 256 bit CEK and a 512 bit CIK.

The CMK value used is:

[148, 116, 199, 126, 2, 117, 233, 76, 150, 149, 89, 193, 61, 34, 239, 226, 109, 71, 59, 160, 192, 140, 150, 235, 106, 204, 49, 176, 68, 119, 13, 34, 49, 19, 41, 69, 5, 20, 252, 145, 104, 129, 137, 138, 67, 23, 153, 83, 81, 234, 82, 247, 48, 211, 41, 130, 35, 124, 45, 156, 249, 7, 225, 168]



 TOC 

A.5.1.  CEK Generation

These values are concatenated to produce the round 1 hash input:

Thus the round 1 hash input is:

[0, 0, 0, 1, 148, 116, 199, 126, 2, 117, 233, 76, 150, 149, 89, 193, 61, 34, 239, 226, 109, 71, 59, 160, 192, 140, 150, 235, 106, 204, 49, 176, 68, 119, 13, 34, 49, 19, 41, 69, 5, 20, 252, 145, 104, 129, 137, 138, 67, 23, 153, 83, 81, 234, 82, 247, 48, 211, 41, 130, 35, 124, 45, 156, 249, 7, 225, 168, 0, 0, 1, 0, 65, 50, 53, 54, 67, 66, 67, 43, 72, 83, 53, 49, 50, 0, 0, 0, 0, 0, 0, 0, 0, 69, 110, 99, 114, 121, 112, 116, 105, 111, 110]

The SHA-512 hash of this value, which is the round 1 hash output, is:

[157, 19, 75, 205, 31, 190, 110, 46, 117, 217, 137, 19, 116, 166, 126, 60, 18, 244, 226, 114, 38, 153, 78, 198, 26, 0, 181, 168, 113, 45, 149, 89, 107, 213, 109, 183, 207, 164, 86, 131, 51, 105, 214, 29, 229, 32, 243, 46, 40, 53, 123, 4, 13, 7, 250, 48, 227, 207, 167, 211, 147, 91, 0, 171]

Given that 256 bits are needed for the CEK and the hash has produced 512 bits, the CEK value is the first 256 bits of that value:

[157, 19, 75, 205, 31, 190, 110, 46, 117, 217, 137, 19, 116, 166, 126, 60, 18, 244, 226, 114, 38, 153, 78, 198, 26, 0, 181, 168, 113, 45, 149, 89]



 TOC 

A.5.2.  CIK Generation

These values are concatenated to produce the round 1 hash input:

Thus the round 1 hash input is:

[0, 0, 0, 1, 148, 116, 199, 126, 2, 117, 233, 76, 150, 149, 89, 193, 61, 34, 239, 226, 109, 71, 59, 160, 192, 140, 150, 235, 106, 204, 49, 176, 68, 119, 13, 34, 49, 19, 41, 69, 5, 20, 252, 145, 104, 129, 137, 138, 67, 23, 153, 83, 81, 234, 82, 247, 48, 211, 41, 130, 35, 124, 45, 156, 249, 7, 225, 168, 0, 0, 2, 0, 65, 50, 53, 54, 67, 66, 67, 43, 72, 83, 53, 49, 50, 0, 0, 0, 0, 0, 0, 0, 0, 73, 110, 116, 101, 103, 114, 105, 116, 121]

The SHA-512 hash of this value, which is the round 1 hash output, is:

[81, 249, 131, 194, 25, 166, 147, 155, 47, 249, 146, 160, 200, 236, 115, 72, 103, 248, 228, 30, 130, 225, 164, 61, 105, 172, 198, 31, 137, 170, 215, 141, 27, 247, 73, 236, 125, 113, 151, 33, 0, 251, 72, 53, 72, 63, 146, 117, 247, 13, 49, 20, 210, 169, 232, 156, 118, 1, 16, 45, 29, 21, 15, 208]

Given that 512 bits are needed for the CIK and the hash has produced 512 bits, the CIK value is that same value:

[81, 249, 131, 194, 25, 166, 147, 155, 47, 249, 146, 160, 200, 236, 115, 72, 103, 248, 228, 30, 130, 225, 164, 61, 105, 172, 198, 31, 137, 170, 215, 141, 27, 247, 73, 236, 125, 113, 151, 33, 0, 251, 72, 53, 72, 63, 146, 117, 247, 13, 49, 20, 210, 169, 232, 156, 118, 1, 16, 45, 29, 21, 15, 208]



 TOC 

Appendix B.  Acknowledgements

Solutions for encrypting JSON content were also explored by JSON Simple Encryption (Bradley, J. and N. Sakimura (editor), “JSON Simple Encryption,” September 2010.) [JSE] and JavaScript Message Security Format (Rescorla, E. and J. Hildebrand, “JavaScript Message Security Format,” March 2011.) [I‑D.rescorla‑jsms], both of which significantly influenced this draft. This draft attempts to explicitly reuse as many of the relevant concepts from XML Encryption 1.1 (Eastlake, D., Reagle, J., Roessler, T., and F. Hirsch, “XML Encryption Syntax and Processing Version 1.1,” March 2012.) [W3C.CR‑xmlenc‑core1‑20120313] and RFC 5652 (Housley, R., “Cryptographic Message Syntax (CMS),” September 2009.) [RFC5652] as possible, while utilizing simple compact JSON-based data structures.

Special thanks are due to John Bradley and Nat Sakimura for the discussions that helped inform the content of this specification and to Eric Rescorla and Joe Hildebrand for allowing the reuse of text from [I‑D.rescorla‑jsms] (Rescorla, E. and J. Hildebrand, “JavaScript Message Security Format,” March 2011.) in this document.

Thanks to Axel Nennker, Emmanuel Raviart, Brian Campbell, and Edmund Jay for validating the examples in this specification.

This specification is the work of the JOSE Working Group, which includes dozens of active and dedicated participants. In particular, the following individuals contributed ideas, feedback, and wording that influenced this specification:

Richard Barnes, John Bradley, Brian Campbell, Breno de Medeiros, Dick Hardt, Jeff Hodges, Edmund Jay, James Manger, Tony Nadalin, Axel Nennker, Emmanuel Raviart, Nat Sakimura, Jim Schaad, Hannes Tschofenig, and Sean Turner.

Jim Schaad and Karen O'Donoghue chaired the JOSE working group and Sean Turner and Stephen Farrell served as Security area directors during the creation of this specification.



 TOC 

Appendix C.  Open Issues

[[ to be removed by the RFC editor before publication as an RFC ]]

The following items remain to be considered or done in this draft:



 TOC 

Appendix D.  Document History

[[ to be removed by the RFC editor before publication as an RFC ]]

-08

-07

-06

-05

-04

-03

-02

-01

-00



 TOC 

Authors' Addresses

  Michael B. Jones
  Microsoft
Email:  mbj@microsoft.com
URI:  http://self-issued.info/
  
  Eric Rescorla
  RTFM, Inc.
Email:  ekr@rtfm.com
  
  Joe Hildebrand
  Cisco Systems, Inc.
Email:  jhildebr@cisco.com