TOC |
|
JSON Web Encryption (JWE) is a means of representing encrypted content using JavaScript Object Notation (JSON) data structures. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification. Related digital signature and MAC capabilities are described in the separate JSON Web Signature (JWS) specification.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as “work in progress.”
This Internet-Draft will expire on January 31, 2013.
Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1.
Introduction
1.1.
Notational Conventions
2.
Terminology
3.
JSON Web Encryption (JWE) Overview
3.1.
Example JWE with an Integrated Integrity Check
3.2.
Example JWE with a Separate Integrity Check
4.
JWE Header
4.1.
Reserved Header Parameter Names
4.1.1.
"alg" (Algorithm) Header Parameter
4.1.2.
"enc" (Encryption Method) Header Parameter
4.1.3.
"int" (Integrity Algorithm) Header Parameter
4.1.4.
"kdf" (Key Derivation Function) Header Parameter
4.1.5.
"iv" (Initialization Vector) Header Parameter
4.1.6.
"epk" (Ephemeral Public Key) Header Parameter
4.1.7.
"zip" (Compression Algorithm) Header Parameter
4.1.8.
"jku" (JWK Set URL) Header Parameter
4.1.9.
"jwk" (JSON Web Key) Header Parameter
4.1.10.
"x5u" (X.509 URL) Header Parameter
4.1.11.
"x5t" (X.509 Certificate Thumbprint) Header Parameter
4.1.12.
"x5c" (X.509 Certificate Chain) Header Parameter
4.1.13.
"kid" (Key ID) Header Parameter
4.1.14.
"typ" (Type) Header Parameter
4.1.15.
"cty" (Content Type) Header Parameter
4.2.
Public Header Parameter Names
4.3.
Private Header Parameter Names
5.
Message Encryption
6.
Message Decryption
7.
CMK Encryption
8.
Integrity Value Calculation
9.
Encrypting JWEs with Cryptographic Algorithms
10.
IANA Considerations
10.1.
Registration of JWE Header Parameter Names
10.1.1.
Registry Contents
10.2.
JSON Web Signature and Encryption Type Values Registration
10.2.1.
Registry Contents
10.3.
Media Type Registration
10.3.1.
Registry Contents
11.
Security Considerations
12.
Open Issues
13.
References
13.1.
Normative References
13.2.
Informative References
Appendix A.
JWE Examples
A.1.
Example JWE using RSAES OAEP and AES GCM
A.1.1.
JWE Header
A.1.2.
Encoded JWE Header
A.1.3.
Content Master Key (CMK)
A.1.4.
Key Encryption
A.1.5.
Encoded JWE Encrypted Key
A.1.6.
"Additional Authenticated Data" Parameter
A.1.7.
Plaintext Encryption
A.1.8.
Encoded JWE Ciphertext
A.1.9.
Encoded JWE Integrity Value
A.1.10.
Complete Representation
A.1.11.
Validation
A.2.
Example JWE using RSAES-PKCS1-V1_5 and AES CBC
A.2.1.
JWE Header
A.2.2.
Encoded JWE Header
A.2.3.
Content Master Key (CMK)
A.2.4.
Key Encryption
A.2.5.
Encoded JWE Encrypted Key
A.2.6.
Key Derivation
A.2.7.
Plaintext Encryption
A.2.8.
Encoded JWE Ciphertext
A.2.9.
Secured Input Value
A.2.10.
JWE Integrity Value
A.2.11.
Encoded JWE Integrity Value
A.2.12.
Complete Representation
A.2.13.
Validation
A.3.
Example Key Derivation with Outputs <= Hash Size
A.3.1.
CEK Generation
A.3.2.
CIK Generation
A.4.
Example Key Derivation with Outputs >= Hash Size
A.4.1.
CEK Generation
A.4.2.
CIK Generation
Appendix B.
Acknowledgements
Appendix C.
Document History
§
Authors' Addresses
TOC |
JSON Web Encryption (JWE) is a compact encryption format intended for space constrained environments such as HTTP Authorization headers and URI query parameters. It represents this content using JavaScript Object Notation (JSON) [RFC4627] (Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” July 2006.) based data structures. The JWE cryptographic mechanisms encrypt and provide integrity protection for arbitrary sequences of bytes.
Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.) specification. Related digital signature and MAC capabilities are described in the separate JSON Web Signature (JWS) [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” July 2012.) specification.
TOC |
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in Key words for use in RFCs to Indicate Requirement Levels [RFC2119] (Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” March 1997.).
TOC |
- JSON Web Encryption (JWE)
- A data structure representing an encrypted message. The structure consists of four parts: the JWE Header, the JWE Encrypted Key, the JWE Ciphertext, and the JWE Integrity Value.
- Plaintext
- The bytes to be encrypted - a.k.a., the message. The plaintext can contain an arbitrary sequence of bytes.
- Ciphertext
- An encrypted representation of the Plaintext.
- Content Encryption Key (CEK)
- A symmetric key used to encrypt the Plaintext for the recipient to produce the Ciphertext.
- Content Integrity Key (CIK)
- A key used with a MAC function to ensure the integrity of the Ciphertext and the parameters used to create it.
- Content Master Key (CMK)
- A key from which the CEK and CIK are derived. When key wrapping or key encryption are employed, the CMK is randomly generated and encrypted to the recipient as the JWE Encrypted Key. When direct encryption with a shared symmetric key is employed, the CMK is the shared key. When key agreement without key wrapping is employed, the CMK is the result of the key agreement algorithm.
- JWE Header
- A string representing a JSON object that describes the encryption operations applied to create the JWE Encrypted Key, the JWE Ciphertext, and the JWE Integrity Value.
- JWE Encrypted Key
- When key wrapping or key encryption are employed, the Content Master Key (CMK) is encrypted with the intended recipient's key and the resulting encrypted content is recorded as a byte array, which is referred to as the JWE Encrypted Key. Otherwise, when direct encryption with a shared or agreed upon symmetric key is employed, the JWE Encrypted Key is the empty byte array.
- JWE Ciphertext
- A byte array containing the Ciphertext.
- JWE Integrity Value
- A byte array containing a MAC value that ensures the integrity of the Ciphertext and the parameters used to create it.
- Base64url Encoding
- The URL- and filename-safe Base64 encoding described in RFC 4648 (Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” October 2006.) [RFC4648], Section 5, with the (non URL-safe) '=' padding characters omitted, as permitted by Section 3.2. (See Appendix C of [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” July 2012.) for notes on implementing base64url encoding without padding.)
- Encoded JWE Header
- Base64url encoding of the bytes of the UTF-8 [RFC3629] (Yergeau, F., “UTF-8, a transformation format of ISO 10646,” November 2003.) representation of the JWE Header.
- Encoded JWE Encrypted Key
- Base64url encoding of the JWE Encrypted Key.
- Encoded JWE Ciphertext
- Base64url encoding of the JWE Ciphertext.
- Encoded JWE Integrity Value
- Base64url encoding of the JWE Integrity Value.
- Header Parameter Name
- The name of a member of the JSON object representing a JWE Header.
- Header Parameter Value
- The value of a member of the JSON object representing a JWE Header.
- JWE Compact Serialization
- A representation of the JWE as the concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE Ciphertext, and the Encoded JWE Integrity Value in that order, with the four strings being separated by period ('.') characters.
- AEAD Algorithm
- An Authenticated Encryption with Associated Data (AEAD) [RFC5116] (McGrew, D., “An Interface and Algorithms for Authenticated Encryption,” January 2008.) encryption algorithm is one that provides an integrated content integrity check. AES Galois/Counter Mode (GCM) is one such algorithm.
- Collision Resistant Namespace
- A namespace that allows names to be allocated in a manner such that they are highly unlikely to collide with other names. For instance, collision resistance can be achieved through administrative delegation of portions of the namespace or through use of collision-resistant name allocation functions. Examples of Collision Resistant Namespaces include: Domain Names, Object Identifiers (OIDs) as defined in the ITU-T X.660 and X.670 Recommendation series, and Universally Unique IDentifiers (UUIDs) [RFC4122] (Leach, P., Mealling, M., and R. Salz, “A Universally Unique IDentifier (UUID) URN Namespace,” July 2005.). When using an administratively delegated namespace, the definer of a name needs to take reasonable precautions to ensure they are in control of the portion of the namespace they use to define the name.
- StringOrURI
- A JSON string value, with the additional requirement that while arbitrary string values MAY be used, any value containing a ":" character MUST be a URI [RFC3986] (Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,” January 2005.). StringOrURI values are compared as case-sensitive strings with no transformations or canonicalizations applied.
TOC |
JWE represents encrypted content using JSON data structures and base64url encoding. The representation consists of four parts: the JWE Header, the JWE Encrypted Key, the JWE Ciphertext, and the JWE Integrity Value. In the Compact Serialization, the four parts are base64url-encoded for transmission, and represented as the concatenation of the encoded strings in that order, with the four strings being separated by period ('.') characters. (A JSON Serialization for this information is defined in the separate JSON Web Encryption JSON Serialization (JWE-JS) [JWE‑JS] (Jones, M., “JSON Web Encryption JSON Serialization (JWE-JS),” July 2012.) specification.)
JWE utilizes encryption to ensure the confidentiality of the Plaintext. JWE adds a content integrity check if not provided by the underlying encryption algorithm.
TOC |
This example encrypts the plaintext "Live long and prosper." to the recipient using RSAES OAEP and AES GCM. The AES GCM algorithm has an integrated integrity check.
The following example JWE Header declares that:
{"alg":"RSA-OAEP","enc":"A256GCM","iv":"48V1_ALb6US04U3b"}
Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this Encoded JWE Header value (with line breaks for display purposes only):
eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00iLCJpdiI6IjQ4VjFfQUxi NlVTMDRVM2IifQ
The remaining steps to finish creating this JWE are:
The final result in this example (with line breaks for display purposes only) is:
eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00iLCJpdiI6IjQ4VjFfQUxi NlVTMDRVM2IifQ. jvwoyhWxOMboB5cxX6ncAi7Wp3Q5FKRtlmIx35pfR9HpEa6Oy-iEpxEqM30W3YcR Q8WU9ouRoO5jd6tfdcpX-2X-OteHw4dnMXdMLjHGGx86LMDeFRAN2KGz7EGPJiva w0yM80fzT3zY0PKrIvU5ml1M5szqUnX4Jw0-PNcIM_j-L5YkLhv3Yk04XCwTJwxN NmXCflYAQO9f00Aa213TJJr6dbHV6I642FwU-EWvtEfN3evgX3EFIVYSnT3HCHkA AIdBQ9ykD-abRzVA_dGp_yJAZQcrZuNTqzThd_22YMPhIpzTygfC_4k7qqxI6t7L e_l5_o-taUG7vaNAl5FjEQ. _e21tGGhac_peEFkLXr2dMPUZiUkrw. YbZSeHCNDZBqAdzpROlyiw
See Appendix A.1 (Example JWE using RSAES OAEP and AES GCM) for the complete details of computing this JWE.
TOC |
This example encrypts the plaintext "Now is the time for all good men to come to the aid of their country." to the recipient using RSAES-PKCS1-V1_5 and AES CBC. AES CBC does not have an integrated integrity check, so a separate integrity check calculation is performed using HMAC SHA-256, with separate encryption and integrity keys being derived from a master key using the Concat KDF with the SHA-256 digest function.
The following example JWE Header (with line breaks for display purposes only) declares that:
{"alg":"RSA1_5","enc":"A128CBC","int":"HS256","iv":"AxY8DCtDaGls bGljb3RoZQ"}
Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this Encoded JWE Header value (with line breaks for display purposes only):
eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDIiwiaW50IjoiSFMyNTYiLCJp diI6IkF4WThEQ3REYUdsc2JHbGpiM1JvWlEifQ
The remaining steps to finish creating this JWE are like the previous example, but with an additional step to compute the separate integrity value:
The final result in this example (with line breaks for display purposes only) is:
eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDIiwiaW50IjoiSFMyNTYiLCJp diI6IkF4WThEQ3REYUdsc2JHbGpiM1JvWlEifQ. IPI_z172hSWHMFgED8EG9DM6hIXU_6NaO1DImCn0vNeuoBq847Sl6qw_GHSYHJUQ XtXJq7S_CxWVrI82wjrOyaQca5tLZRZc45BfKHeqByThKI261QevEK56SyAwwXfK KZjSvkQ5dwTFSgfy76rMSUvVynHYEhdCatBF9HWTAiXPx7hgZixG1FeP_QCmOylz 2VClVyYFCbjKREOwBFf-puNYfO75S3LNlJUtTsGGQL2oTKpMsEiUTdefkje91VX9 h8g7908lFsggbjV7NicJsufuXxnTj1fcWIrRDeNIOmakiPEODi0gTSz0ou-W-LWK -3T1zYlOIiIKBjsExQKZ-w. _Z_djlIoC4MDSCKireWS2beti4Q6iSG2UjFujQvdz-_PQdUcFNkOulegD6BgjgdF LjeB4HHOO7UHvP8PEDu0a0sA2a_-CI0w2YQQ2QQe35M. c41k4T4eAgCCt63m8ZNmiOinMciFFypOFpvid7i6D0k
See Appendix A.2 (Example JWE using RSAES-PKCS1-V1_5 and AES CBC) for the complete details of computing this JWE.
TOC |
The members of the JSON object represented by the JWE Header describe the encryption applied to the Plaintext and optionally additional properties of the JWE. The Header Parameter Names within this object MUST be unique; JWEs with duplicate Header Parameter Names MUST be rejected. Implementations MUST understand the entire contents of the header; otherwise, the JWE MUST be rejected.
There are two ways of distinguishing whether a header is a JWS Header or a JWE Header. The first is by examining the alg (algorithm) header value. If the value represents a digital signature or MAC algorithm, or is the value none, it is for a JWS; if it represents an encryption or key agreement algorithm, it is for a JWE. A second method is determining whether an enc (encryption method) member exists. If the enc member exists, it is a JWE; otherwise, it is a JWS. Both methods will yield the same result for all legal input values.
There are three classes of Header Parameter Names: Reserved Header Parameter Names, Public Header Parameter Names, and Private Header Parameter Names.
TOC |
The following header parameter names are reserved with meanings as defined below. All the names are short because a core goal of JWE is for the representations to be compact.
Additional reserved header parameter names MAY be defined via the IANA JSON Web Signature and Encryption Header Parameters registry [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” July 2012.). As indicated by the common registry, JWSs and JWEs share a common header parameter space; when a parameter is used by both specifications, its usage must be compatible between the specifications.
TOC |
The alg (algorithm) header parameter identifies the cryptographic algorithm used to encrypt or determine the value of the Content Master Key (CMK). The algorithm specified by the alg value MUST be supported by the implementation and there MUST be a key for use with that algorithm associated with the intended recipient or the JWE MUST be rejected. alg values SHOULD either be registered in the IANA JSON Web Signature and Encryption Algorithms registry [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.) or be a URI that contains a Collision Resistant Namespace. The alg value is a case sensitive string containing a StringOrURI value. This header parameter is REQUIRED.
A list of defined alg values can be found in the IANA JSON Web Signature and Encryption Algorithms registry [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.); the initial contents of this registry is the values defined in Section 4.1 of the JSON Web Algorithms (JWA) [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.) specification.
TOC |
The enc (encryption method) header parameter identifies the symmetric encryption algorithm used to encrypt the Plaintext to produce the Ciphertext. The algorithm specified by the enc value MUST be supported by the implementation or the JWE MUST be rejected. enc values SHOULD either be registered in the IANA JSON Web Signature and Encryption Algorithms registry [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.) or be a URI that contains a Collision Resistant Namespace. The enc value is a case sensitive string containing a StringOrURI value. This header parameter is REQUIRED.
A list of defined enc values can be found in the IANA JSON Web Signature and Encryption Algorithms registry [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.); the initial contents of this registry is the values defined in Section 4.2 of the JSON Web Algorithms (JWA) [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.) specification.
TOC |
The int (integrity algorithm) header parameter identifies the cryptographic algorithm used to safeguard the integrity of the Ciphertext and the parameters used to create it. The int parameter uses the MAC subset of the algorithm values used by the JWS alg parameter. int values SHOULD either be registered in the IANA JSON Web Signature and Encryption Algorithms registry [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.) or be a URI that contains a Collision Resistant Namespace. The int value is a case sensitive string containing a StringOrURI value. This header parameter is REQUIRED when an AEAD algorithm is not used to encrypt the Plaintext and MUST NOT be present when an AEAD algorithm is used.
A list of defined int values can be found in the IANA JSON Web Signature and Encryption Algorithms registry [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.); the initial contents of this registry is the values defined in Section 4.3 of the JSON Web Algorithms (JWA) [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.) specification.
TOC |
The kdf (key derivation function) header parameter identifies the cryptographic algorithm used to derive the CEK and CIK from the CMK. kdf values SHOULD either be registered in the IANA JSON Web Signature and Encryption Algorithms registry [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.) or be a URI that contains a Collision Resistant Namespace. The kdf value is a case sensitive string containing a StringOrURI value. This header parameter is OPTIONAL when an AEAD algorithm is not used to encrypt the Plaintext and MUST NOT be present when an AEAD algorithm is used.
When an AEAD algorithm is not used and no kdf header parameter is present, the CS256 KDF [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.) SHALL be used.
A list of defined kdf values can be found in the IANA JSON Web Signature and Encryption Algorithms registry [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.); the initial contents of this registry is the values defined in Section 4.4 of the JSON Web Algorithms (JWA) [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.) specification.
TOC |
The iv (initialization vector) value for algorithms requiring it, represented as a base64url encoded string. This header parameter is OPTIONAL, although its use is REQUIRED with some enc algorithms.
TOC |
The epk (ephemeral public key) value created by the originator for the use in key agreement algorithms. This key is represented as a JSON Web Key [JWK] (Jones, M., “JSON Web Key (JWK),” July 2012.) value. This header parameter is OPTIONAL, although its use is REQUIRED with some alg algorithms.
TOC |
The zip (compression algorithm) applied to the Plaintext before encryption, if any. If present, the value of the zip header parameter MUST be the case sensitive string "DEF". Compression is performed with the DEFLATE [RFC1951] (Deutsch, P., “DEFLATE Compressed Data Format Specification version 1.3,” May 1996.) algorithm. If no zip parameter is present, no compression is applied to the Plaintext before encryption. This header parameter is OPTIONAL.
TOC |
The jku (JWK Set URL) header parameter is a URI [RFC3986] (Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,” January 2005.) that refers to a resource for a set of JSON-encoded public keys, one of which corresponds to the key used to encrypt the JWE; this can be used to determine the private key needed to decrypt the JWE. The keys MUST be encoded as a JSON Web Key Set (JWK Set) [JWK] (Jones, M., “JSON Web Key (JWK),” July 2012.). The protocol used to acquire the resource MUST provide integrity protection; an HTTP GET request to retrieve the certificate MUST use TLS [RFC2818] (Rescorla, E., “HTTP Over TLS,” May 2000.) [RFC5246] (Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” August 2008.); the identity of the server MUST be validated, as per Section 3.1 of HTTP Over TLS [RFC2818] (Rescorla, E., “HTTP Over TLS,” May 2000.). This header parameter is OPTIONAL.
TOC |
The jwk (JSON Web Key) header parameter is a public key that corresponds to the key used to encrypt the JWE; this can be used to determine the private key needed to decrypt the JWE. This key is represented as a JSON Web Key [JWK] (Jones, M., “JSON Web Key (JWK),” July 2012.). This header parameter is OPTIONAL.
TOC |
The x5u (X.509 URL) header parameter is a URI [RFC3986] (Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,” January 2005.) that refers to a resource for the X.509 public key certificate or certificate chain [RFC5280] (Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” May 2008.) corresponding to the key used to encrypt the JWE; this can be used to determine the private key needed to decrypt the JWE. The identified resource MUST provide a representation of the certificate or certificate chain that conforms to RFC 5280 (Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” May 2008.) [RFC5280] in PEM encoded form [RFC1421] (Linn, J., “Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and Authentication Procedures,” February 1993.). The certificate containing the public key of the entity that encrypted the JWE MUST be the first certificate. This MAY be followed by additional certificates, with each subsequent certificate being the one used to certify the previous one. The protocol used to acquire the resource MUST provide integrity protection; an HTTP GET request to retrieve the certificate MUST use TLS [RFC2818] (Rescorla, E., “HTTP Over TLS,” May 2000.) [RFC5246] (Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” August 2008.); the identity of the server MUST be validated, as per Section 3.1 of HTTP Over TLS [RFC2818] (Rescorla, E., “HTTP Over TLS,” May 2000.). This header parameter is OPTIONAL.
TOC |
The x5t (X.509 Certificate Thumbprint) header parameter provides a base64url encoded SHA-1 thumbprint (a.k.a. digest) of the DER encoding of the X.509 certificate [RFC5280] (Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” May 2008.) corresponding to the key used to encrypt the JWE; this can be used to determine the private key needed to decrypt the JWE. This header parameter is OPTIONAL.
If, in the future, certificate thumbprints need to be computed using hash functions other than SHA-1, it is suggested that additional related header parameters be defined for that purpose. For example, it is suggested that a new x5t#S256 (X.509 Certificate Thumbprint using SHA-256) header parameter could be defined by registering it in the IANA JSON Web Signature and Encryption Header Parameters registry [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” July 2012.).
TOC |
The x5c (X.509 Certificate Chain) header parameter contains the X.509 public key certificate or certificate chain [RFC5280] (Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” May 2008.) corresponding to the key used to encrypt the JWE; this can be used to determine the private key needed to decrypt the JWE. The certificate or certificate chain is represented as an array of certificate values. Each value is a base64 encoded ([RFC4648] (Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” October 2006.) Section 4 - not base64url encoded) DER [ITU.X690.1994] (International Telecommunications Union, “Information Technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER),” 1994.) PKIX certificate value. The certificate containing the public key of the entity that encrypted the JWE MUST be the first certificate. This MAY be followed by additional certificates, with each subsequent certificate being the one used to certify the previous one. The recipient MUST verify the certificate chain according to [RFC5280] (Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” May 2008.) and reject the JWE if any validation failure occurs. This header parameter is OPTIONAL.
See Appendix B of [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” July 2012.) for an example x5c value.
TOC |
The kid (key ID) header parameter is a hint indicating which key was used to encrypt the JWE; this can be used to determine the private key needed to decrypt the JWE. This parameter allows originators to explicitly signal a change of key to recipients. Should the recipient be unable to locate a key corresponding to the kid value, they SHOULD treat that condition as an error. The interpretation of the kid value is unspecified. Its value MUST be a string. This header parameter is OPTIONAL.
When used with a JWK, the kid value MAY be used to match a JWK kid parameter value.
TOC |
The typ (type) header parameter is used to declare the type of this object. The type value JWE MAY be used to indicate that this object is a JWE. The typ value is a case sensitive string. This header parameter is OPTIONAL.
MIME Media Type [RFC2046] (Freed, N. and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types,” November 1996.) values MAY be used as typ values.
typ values SHOULD either be registered in the IANA JSON Web Signature and Encryption Type Values registry [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” July 2012.) or be a URI that contains a Collision Resistant Namespace.
TOC |
The cty (content type) header parameter is used to declare the type of the encrypted content (the Plaintext). The cty value is a case sensitive string. This header parameter is OPTIONAL.
The values used for the cty header parameter come from the same value space as the typ header parameter, with the same rules applying.
TOC |
Additional header parameter names can be defined by those using JWEs. However, in order to prevent collisions, any new header parameter name SHOULD either be registered in the IANA JSON Web Signature and Encryption Header Parameters registry [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” July 2012.) or be a URI that contains a Collision Resistant Namespace. In each case, the definer of the name or value needs to take reasonable precautions to make sure they are in control of the part of the namespace they use to define the header parameter name.
New header parameters should be introduced sparingly, as they can result in non-interoperable JWEs.
TOC |
A producer and consumer of a JWE may agree to any header parameter name that is not a Reserved Name Section 4.1 (Reserved Header Parameter Names) or a Public Name Section 4.2 (Public Header Parameter Names). Unlike Public Names, these private names are subject to collision and should be used with caution.
TOC |
The message encryption process is as follows. The order of the steps is not significant in cases where there are no dependencies between the inputs and outputs of the steps.
TOC |
The message decryption process is the reverse of the encryption process. The order of the steps is not significant in cases where there are no dependencies between the inputs and outputs of the steps. If any of these steps fails, the JWE MUST be rejected.
TOC |
JWE supports three forms of Content Master Key (CMK) encryption:
See the algorithms registered for enc usage in the IANA JSON Web Signature and Encryption Algorithms registry [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.) and Section 4.1 of the JSON Web Algorithms (JWA) [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.) specification for lists of encryption algorithms that can be used for CMK encryption.
TOC |
When a non-AEAD algorithm is used (an algorithm without an integrated content check), JWE adds an explicit integrity check value to the representation. This value is computed in the manner described in the JSON Web Signature (JWS) [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” July 2012.) specification, with these modifications:
The computed JWS Signature value is the resulting integrity value.
TOC |
JWE uses cryptographic algorithms to encrypt the Plaintext and the Content Encryption Key (CMK) and to provide integrity protection for the JWE Header, JWE Encrypted Key, and JWE Ciphertext. The JSON Web Algorithms (JWA) [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.) specification specifies a set of cryptographic algorithms and identifiers to be used with this specification and defines registries for additional such algorithms. Specifically, Section 4.1 specifies a set of alg (algorithm) header parameter values, Section 4.2 specifies a set of enc (encryption method) header parameter values, Section 4.3 specifies a set of int (integrity algorithm) header parameter values, and Section 4.4 specifies a set of kdf (key derivation function) header parameter values intended for use this specification. It also describes the semantics and operations that are specific to these algorithms and algorithm families.
Public keys employed for encryption can be identified using the Header Parameter methods described in Section 4.1 (Reserved Header Parameter Names) or can be distributed using methods that are outside the scope of this specification.
TOC |
TOC |
This specification registers the Header Parameter Names defined in Section 4.1 (Reserved Header Parameter Names) in the IANA JSON Web Signature and Encryption Header Parameters registry [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” July 2012.).
TOC |
TOC |
TOC |
This specification registers the JWE type value in the IANA JSON Web Signature and Encryption Type Values registry [JWS] (Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” July 2012.):
TOC |
TOC |
This specification registers the application/jwe Media Type [RFC2046] (Freed, N. and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types,” November 1996.) in the MIME Media Type registry [RFC4288] (Freed, N. and J. Klensin, “Media Type Specifications and Registration Procedures,” December 2005.) to indicate that the content is a JWE using the Compact Serialization.
TOC |
All of the security issues faced by any cryptographic application must be faced by a JWS/JWE/JWK agent. Among these issues are protecting the user's private key, preventing various attacks, and helping the user avoid mistakes such as inadvertently encrypting a message for the wrong recipient. The entire list of security considerations is beyond the scope of this document, but some significant concerns are listed here.
All the security considerations in the JWS specification also apply to this specification. Likewise, all the security considerations in XML Encryption 1.1 (Eastlake, D., Reagle, J., Hirsch, F., and T. Roessler, “XML Encryption Syntax and Processing Version 1.1,” March 2012.) [W3C.CR‑xmlenc‑core1‑20120313] also apply to JWE, other than those that are XML specific.
TOC |
[[ to be removed by the RFC editor before publication as an RFC ]]
The following items remain to be considered or done in this draft:
TOC |
TOC |
TOC |
[I-D.rescorla-jsms] | Rescorla, E. and J. Hildebrand, “JavaScript Message Security Format,” draft-rescorla-jsms-00 (work in progress), March 2011 (TXT). |
[JSE] | Bradley, J. and N. Sakimura (editor), “JSON Simple Encryption,” September 2010. |
[JWE-JS] | Jones, M., “JSON Web Encryption JSON Serialization (JWE-JS),” July 2012. |
[RFC4122] | Leach, P., Mealling, M., and R. Salz, “A Universally Unique IDentifier (UUID) URN Namespace,” RFC 4122, July 2005 (TXT, HTML, XML). |
[RFC5652] | Housley, R., “Cryptographic Message Syntax (CMS),” STD 70, RFC 5652, September 2009 (TXT). |
TOC |
This section provides examples of JWE computations.
TOC |
This example encrypts the plaintext "Live long and prosper." to the recipient using RSAES OAEP and AES GCM. The AES GCM algorithm has an integrated integrity check. The representation of this plaintext is:
[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32, 112, 114, 111, 115, 112, 101, 114, 46]
TOC |
The following example JWE Header declares that:
{"alg":"RSA-OAEP","enc":"A256GCM","iv":"48V1_ALb6US04U3b"}
TOC |
Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this Encoded JWE Header value (with line breaks for display purposes only):
eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00iLCJpdiI6IjQ4VjFfQUxi NlVTMDRVM2IifQ
TOC |
Generate a random Content Master Key (CMK). In this example, the key value is:
[177, 161, 244, 128, 84, 143, 225, 115, 63, 180, 3, 255, 107, 154, 212, 246, 138, 7, 110, 91, 112, 46, 34, 105, 47, 130, 203, 46, 122, 234, 64, 252]
TOC |
Encrypt the CMK with the recipient's public key using the RSAES OAEP algorithm to produce the JWE Encrypted Key. In this example, the RSA key parameters are:
Parameter Name | Value |
---|---|
Modulus | [161, 168, 84, 34, 133, 176, 208, 173, 46, 176, 163, 110, 57, 30, 135, 227, 9, 31, 226, 128, 84, 92, 116, 241, 70, 248, 27, 227, 193, 62, 5, 91, 241, 145, 224, 205, 141, 176, 184, 133, 239, 43, 81, 103, 9, 161, 153, 157, 179, 104, 123, 51, 189, 34, 152, 69, 97, 69, 78, 93, 140, 131, 87, 182, 169, 101, 92, 142, 3, 22, 167, 8, 212, 56, 35, 79, 210, 222, 192, 208, 252, 49, 109, 138, 173, 253, 210, 166, 201, 63, 102, 74, 5, 158, 41, 90, 144, 108, 160, 79, 10, 89, 222, 231, 172, 31, 227, 197, 0, 19, 72, 81, 138, 78, 136, 221, 121, 118, 196, 17, 146, 10, 244, 188, 72, 113, 55, 221, 162, 217, 171, 27, 57, 233, 210, 101, 236, 154, 199, 56, 138, 239, 101, 48, 198, 186, 202, 160, 76, 111, 234, 71, 57, 183, 5, 211, 171, 136, 126, 64, 40, 75, 58, 89, 244, 254, 107, 84, 103, 7, 236, 69, 163, 18, 180, 251, 58, 153, 46, 151, 174, 12, 103, 197, 181, 161, 162, 55, 250, 235, 123, 110, 17, 11, 158, 24, 47, 133, 8, 199, 235, 107, 126, 130, 246, 73, 195, 20, 108, 202, 176, 214, 187, 45, 146, 182, 118, 54, 32, 200, 61, 201, 71, 243, 1, 255, 131, 84, 37, 111, 211, 168, 228, 45, 192, 118, 27, 197, 235, 232, 36, 10, 230, 248, 190, 82, 182, 140, 35, 204, 108, 190, 253, 186, 186, 27] |
Exponent | [1, 0, 1] |
Private Exponent | [144, 183, 109, 34, 62, 134, 108, 57, 44, 252, 10, 66, 73, 54, 16, 181, 233, 92, 54, 219, 101, 42, 35, 178, 63, 51, 43, 92, 119, 136, 251, 41, 53, 23, 191, 164, 164, 60, 88, 227, 229, 152, 228, 213, 149, 228, 169, 237, 104, 71, 151, 75, 88, 252, 216, 77, 251, 231, 28, 97, 88, 193, 215, 202, 248, 216, 121, 195, 211, 245, 250, 112, 71, 243, 61, 129, 95, 39, 244, 122, 225, 217, 169, 211, 165, 48, 253, 220, 59, 122, 219, 42, 86, 223, 32, 236, 39, 48, 103, 78, 122, 216, 187, 88, 176, 89, 24, 1, 42, 177, 24, 99, 142, 170, 1, 146, 43, 3, 108, 64, 194, 121, 182, 95, 187, 134, 71, 88, 96, 134, 74, 131, 167, 69, 106, 143, 121, 27, 72, 44, 245, 95, 39, 194, 179, 175, 203, 122, 16, 112, 183, 17, 200, 202, 31, 17, 138, 156, 184, 210, 157, 184, 154, 131, 128, 110, 12, 85, 195, 122, 241, 79, 251, 229, 183, 117, 21, 123, 133, 142, 220, 153, 9, 59, 57, 105, 81, 255, 138, 77, 82, 54, 62, 216, 38, 249, 208, 17, 197, 49, 45, 19, 232, 157, 251, 131, 137, 175, 72, 126, 43, 229, 69, 179, 117, 82, 157, 213, 83, 35, 57, 210, 197, 252, 171, 143, 194, 11, 47, 163, 6, 253, 75, 252, 96, 11, 187, 84, 130, 210, 7, 121, 78, 91, 79, 57, 251, 138, 132, 220, 60, 224, 173, 56, 224, 201] |
The resulting JWE Encrypted Key value is:
[142, 252, 40, 202, 21, 177, 56, 198, 232, 7, 151, 49, 95, 169, 220, 2, 46, 214, 167, 116, 57, 20, 164, 109, 150, 98, 49, 223, 154, 95, 71, 209, 233, 17, 174, 142, 203, 232, 132, 167, 17, 42, 51, 125, 22, 221, 135, 17, 67, 197, 148, 246, 139, 145, 160, 238, 99, 119, 171, 95, 117, 202, 87, 251, 101, 254, 58, 215, 135, 195, 135, 103, 49, 119, 76, 46, 49, 198, 27, 31, 58, 44, 192, 222, 21, 16, 13, 216, 161, 179, 236, 65, 143, 38, 43, 218, 195, 76, 140, 243, 71, 243, 79, 124, 216, 208, 242, 171, 34, 245, 57, 154, 93, 76, 230, 204, 234, 82, 117, 248, 39, 13, 62, 60, 215, 8, 51, 248, 254, 47, 150, 36, 46, 27, 247, 98, 77, 56, 92, 44, 19, 39, 12, 77, 54, 101, 194, 126, 86, 0, 64, 239, 95, 211, 64, 26, 219, 93, 211, 36, 154, 250, 117, 177, 213, 232, 142, 184, 216, 92, 20, 248, 69, 175, 180, 71, 205, 221, 235, 224, 95, 113, 5, 33, 86, 18, 157, 61, 199, 8, 121, 0, 0, 135, 65, 67, 220, 164, 15, 230, 155, 71, 53, 64, 253, 209, 169, 255, 34, 64, 101, 7, 43, 102, 227, 83, 171, 52, 225, 119, 253, 182, 96, 195, 225, 34, 156, 211, 202, 7, 194, 255, 137, 59, 170, 172, 72, 234, 222, 203, 123, 249, 121, 254, 143, 173, 105, 65, 187, 189, 163, 64, 151, 145, 99, 17]
TOC |
Base64url encode the JWE Encrypted Key to produce the Encoded JWE Encrypted Key. This result (with line breaks for display purposes only) is:
jvwoyhWxOMboB5cxX6ncAi7Wp3Q5FKRtlmIx35pfR9HpEa6Oy-iEpxEqM30W3YcR Q8WU9ouRoO5jd6tfdcpX-2X-OteHw4dnMXdMLjHGGx86LMDeFRAN2KGz7EGPJiva w0yM80fzT3zY0PKrIvU5ml1M5szqUnX4Jw0-PNcIM_j-L5YkLhv3Yk04XCwTJwxN NmXCflYAQO9f00Aa213TJJr6dbHV6I642FwU-EWvtEfN3evgX3EFIVYSnT3HCHkA AIdBQ9ykD-abRzVA_dGp_yJAZQcrZuNTqzThd_22YMPhIpzTygfC_4k7qqxI6t7L e_l5_o-taUG7vaNAl5FjEQ
TOC |
Concatenate the Encoded JWE Header value, a period character ('.'), and the Encoded JWE Encrypted Key to create the "additional authenticated data" parameter for the AES GCM algorithm. This result (with line breaks for display purposes only) is:
eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00iLCJpdiI6IjQ4VjFfQUxi NlVTMDRVM2IifQ. jvwoyhWxOMboB5cxX6ncAi7Wp3Q5FKRtlmIx35pfR9HpEa6Oy-iEpxEqM30W3YcR Q8WU9ouRoO5jd6tfdcpX-2X-OteHw4dnMXdMLjHGGx86LMDeFRAN2KGz7EGPJiva w0yM80fzT3zY0PKrIvU5ml1M5szqUnX4Jw0-PNcIM_j-L5YkLhv3Yk04XCwTJwxN NmXCflYAQO9f00Aa213TJJr6dbHV6I642FwU-EWvtEfN3evgX3EFIVYSnT3HCHkA AIdBQ9ykD-abRzVA_dGp_yJAZQcrZuNTqzThd_22YMPhIpzTygfC_4k7qqxI6t7L e_l5_o-taUG7vaNAl5FjEQ
The representation of this value is:
[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69, 116, 84, 48, 70, 70, 85, 67, 73, 115, 73, 109, 86, 117, 89, 121, 73, 54, 73, 107, 69, 121, 78, 84, 90, 72, 81, 48, 48, 105, 76, 67, 74, 112, 100, 105, 73, 54, 73, 106, 81, 52, 86, 106, 70, 102, 81, 85, 120, 105, 78, 108, 86, 84, 77, 68, 82, 86, 77, 50, 73, 105, 102, 81, 46, 106, 118, 119, 111, 121, 104, 87, 120, 79, 77, 98, 111, 66, 53, 99, 120, 88, 54, 110, 99, 65, 105, 55, 87, 112, 51, 81, 53, 70, 75, 82, 116, 108, 109, 73, 120, 51, 53, 112, 102, 82, 57, 72, 112, 69, 97, 54, 79, 121, 45, 105, 69, 112, 120, 69, 113, 77, 51, 48, 87, 51, 89, 99, 82, 81, 56, 87, 85, 57, 111, 117, 82, 111, 79, 53, 106, 100, 54, 116, 102, 100, 99, 112, 88, 45, 50, 88, 45, 79, 116, 101, 72, 119, 52, 100, 110, 77, 88, 100, 77, 76, 106, 72, 71, 71, 120, 56, 54, 76, 77, 68, 101, 70, 82, 65, 78, 50, 75, 71, 122, 55, 69, 71, 80, 74, 105, 118, 97, 119, 48, 121, 77, 56, 48, 102, 122, 84, 51, 122, 89, 48, 80, 75, 114, 73, 118, 85, 53, 109, 108, 49, 77, 53, 115, 122, 113, 85, 110, 88, 52, 74, 119, 48, 45, 80, 78, 99, 73, 77, 95, 106, 45, 76, 53, 89, 107, 76, 104, 118, 51, 89, 107, 48, 52, 88, 67, 119, 84, 74, 119, 120, 78, 78, 109, 88, 67, 102, 108, 89, 65, 81, 79, 57, 102, 48, 48, 65, 97, 50, 49, 51, 84, 74, 74, 114, 54, 100, 98, 72, 86, 54, 73, 54, 52, 50, 70, 119, 85, 45, 69, 87, 118, 116, 69, 102, 78, 51, 101, 118, 103, 88, 51, 69, 70, 73, 86, 89, 83, 110, 84, 51, 72, 67, 72, 107, 65, 65, 73, 100, 66, 81, 57, 121, 107, 68, 45, 97, 98, 82, 122, 86, 65, 95, 100, 71, 112, 95, 121, 74, 65, 90, 81, 99, 114, 90, 117, 78, 84, 113, 122, 84, 104, 100, 95, 50, 50, 89, 77, 80, 104, 73, 112, 122, 84, 121, 103, 102, 67, 95, 52, 107, 55, 113, 113, 120, 73, 54, 116, 55, 76, 101, 95, 108, 53, 95, 111, 45, 116, 97, 85, 71, 55, 118, 97, 78, 65, 108, 53, 70, 106, 69, 81]
TOC |
Encrypt the Plaintext with AES GCM, using the IV, the CMK as the encryption key, and the "additional authenticated data" value above, requesting a 128 bit "authentication tag" output. The resulting Ciphertext is:
[253, 237, 181, 180, 97, 161, 105, 207, 233, 120, 65, 100, 45, 122, 246, 116, 195, 212, 102, 37, 36, 175]
The resulting "authentication tag" value is:
[97, 182, 82, 120, 112, 141, 13, 144, 106, 1, 220, 233, 68, 233, 114, 139]
TOC |
Base64url encode the resulting Ciphertext to create the Encoded JWE Ciphertext. This result is:
_e21tGGhac_peEFkLXr2dMPUZiUkrw
TOC |
Base64url encode the resulting "authentication tag" to create the Encoded JWE Integrity Value. This result is:
YbZSeHCNDZBqAdzpROlyiw
TOC |
Assemble the final representation: The Compact Serialization of this result is the concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE Ciphertext, and the Encoded JWE Integrity Value in that order, with the four strings being separated by three period ('.') characters.
The final result in this example (with line breaks for display purposes only) is:
eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00iLCJpdiI6IjQ4VjFfQUxi NlVTMDRVM2IifQ. jvwoyhWxOMboB5cxX6ncAi7Wp3Q5FKRtlmIx35pfR9HpEa6Oy-iEpxEqM30W3YcR Q8WU9ouRoO5jd6tfdcpX-2X-OteHw4dnMXdMLjHGGx86LMDeFRAN2KGz7EGPJiva w0yM80fzT3zY0PKrIvU5ml1M5szqUnX4Jw0-PNcIM_j-L5YkLhv3Yk04XCwTJwxN NmXCflYAQO9f00Aa213TJJr6dbHV6I642FwU-EWvtEfN3evgX3EFIVYSnT3HCHkA AIdBQ9ykD-abRzVA_dGp_yJAZQcrZuNTqzThd_22YMPhIpzTygfC_4k7qqxI6t7L e_l5_o-taUG7vaNAl5FjEQ. _e21tGGhac_peEFkLXr2dMPUZiUkrw. YbZSeHCNDZBqAdzpROlyiw
TOC |
This example illustrates the process of creating a JWE with an AEAD algorithm. These results can be used to validate JWE decryption implementations for these algorithms. However, note that since the RSAES OAEP computation includes random values, the results above will not be repeatable.
TOC |
This example encrypts the plaintext "Now is the time for all good men to come to the aid of their country." to the recipient using RSAES-PKCS1-V1_5 and AES CBC. AES CBC does not have an integrated integrity check, so a separate integrity check calculation is performed using HMAC SHA-256, with separate encryption and integrity keys being derived from a master key using the Concat KDF with the SHA-256 digest function. The representation of this plaintext is:
[78, 111, 119, 32, 105, 115, 32, 116, 104, 101, 32, 116, 105, 109, 101, 32, 102, 111, 114, 32, 97, 108, 108, 32, 103, 111, 111, 100, 32, 109, 101, 110, 32, 116, 111, 32, 99, 111, 109, 101, 32, 116, 111, 32, 116, 104, 101, 32, 97, 105, 100, 32, 111, 102, 32, 116, 104, 101, 105, 114, 32, 99, 111, 117, 110, 116, 114, 121, 46]
TOC |
The following example JWE Header (with line breaks for display purposes only) declares that:
{"alg":"RSA1_5","enc":"A128CBC","int":"HS256","iv":"AxY8DCtDaGls bGljb3RoZQ"}
TOC |
Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this Encoded JWE Header value (with line breaks for display purposes only):
eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDIiwiaW50IjoiSFMyNTYiLCJp diI6IkF4WThEQ3REYUdsc2JHbGpiM1JvWlEifQ
TOC |
Generate a random Content Master Key (CMK). In this example, the key value is:
[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]
TOC |
Encrypt the CMK with the recipient's public key using the RSAES-PKCS1-V1_5 algorithm to produce the JWE Encrypted Key. In this example, the RSA key parameters are:
Parameter Name | Value |
---|---|
Modulus | [177, 119, 33, 13, 164, 30, 108, 121, 207, 136, 107, 242, 12, 224, 19, 226, 198, 134, 17, 71, 173, 75, 42, 61, 48, 162, 206, 161, 97, 108, 185, 234, 226, 219, 118, 206, 118, 5, 169, 224, 60, 181, 90, 85, 51, 123, 6, 224, 4, 122, 29, 230, 151, 12, 244, 127, 121, 25, 4, 85, 220, 144, 215, 110, 130, 17, 68, 228, 129, 138, 7, 130, 231, 40, 212, 214, 17, 179, 28, 124, 151, 178, 207, 20, 14, 154, 222, 113, 176, 24, 198, 73, 211, 113, 9, 33, 178, 80, 13, 25, 21, 25, 153, 212, 206, 67, 154, 147, 70, 194, 192, 183, 160, 83, 98, 236, 175, 85, 23, 97, 75, 199, 177, 73, 145, 50, 253, 206, 32, 179, 254, 236, 190, 82, 73, 67, 129, 253, 252, 220, 108, 136, 138, 11, 192, 1, 36, 239, 228, 55, 81, 113, 17, 25, 140, 63, 239, 146, 3, 172, 96, 60, 227, 233, 64, 255, 224, 173, 225, 228, 229, 92, 112, 72, 99, 97, 26, 87, 187, 123, 46, 50, 90, 202, 117, 73, 10, 153, 47, 224, 178, 163, 77, 48, 46, 154, 33, 148, 34, 228, 33, 172, 216, 89, 46, 225, 127, 68, 146, 234, 30, 147, 54, 146, 5, 133, 45, 78, 254, 85, 55, 75, 213, 86, 194, 218, 215, 163, 189, 194, 54, 6, 83, 36, 18, 153, 53, 7, 48, 89, 35, 66, 144, 7, 65, 154, 13, 97, 75, 55, 230, 132, 3, 13, 239, 71] |
Exponent | [1, 0, 1] |
Private Exponent | [84, 80, 150, 58, 165, 235, 242, 123, 217, 55, 38, 154, 36, 181, 221, 156, 211, 215, 100, 164, 90, 88, 40, 228, 83, 148, 54, 122, 4, 16, 165, 48, 76, 194, 26, 107, 51, 53, 179, 165, 31, 18, 198, 173, 78, 61, 56, 97, 252, 158, 140, 80, 63, 25, 223, 156, 36, 203, 214, 252, 120, 67, 180, 167, 3, 82, 243, 25, 97, 214, 83, 133, 69, 16, 104, 54, 160, 200, 41, 83, 164, 187, 70, 153, 111, 234, 242, 158, 175, 28, 198, 48, 211, 45, 148, 58, 23, 62, 227, 74, 52, 117, 42, 90, 41, 249, 130, 154, 80, 119, 61, 26, 193, 40, 125, 10, 152, 174, 227, 225, 205, 32, 62, 66, 6, 163, 100, 99, 219, 19, 253, 25, 105, 80, 201, 29, 252, 157, 237, 69, 1, 80, 171, 167, 20, 196, 156, 109, 249, 88, 0, 3, 152, 38, 165, 72, 87, 6, 152, 71, 156, 214, 16, 71, 30, 82, 51, 103, 76, 218, 63, 9, 84, 163, 249, 91, 215, 44, 238, 85, 101, 240, 148, 1, 82, 224, 91, 135, 105, 127, 84, 171, 181, 152, 210, 183, 126, 24, 46, 196, 90, 173, 38, 245, 219, 186, 222, 27, 240, 212, 194, 15, 66, 135, 226, 178, 190, 52, 245, 74, 65, 224, 81, 100, 85, 25, 204, 165, 203, 187, 175, 84, 100, 82, 15, 11, 23, 202, 151, 107, 54, 41, 207, 3, 136, 229, 134, 131, 93, 139, 50, 182, 204, 93, 130, 89] |
The resulting JWE Encrypted Key value is:
[32, 242, 63, 207, 94, 246, 133, 37, 135, 48, 88, 4, 15, 193, 6, 244, 51, 58, 132, 133, 212, 255, 163, 90, 59, 80, 200, 152, 41, 244, 188, 215, 174, 160, 26, 188, 227, 180, 165, 234, 172, 63, 24, 116, 152, 28, 149, 16, 94, 213, 201, 171, 180, 191, 11, 21, 149, 172, 143, 54, 194, 58, 206, 201, 164, 28, 107, 155, 75, 101, 22, 92, 227, 144, 95, 40, 119, 170, 7, 36, 225, 40, 141, 186, 213, 7, 175, 16, 174, 122, 75, 32, 48, 193, 119, 202, 41, 152, 210, 190, 68, 57, 119, 4, 197, 74, 7, 242, 239, 170, 204, 73, 75, 213, 202, 113, 216, 18, 23, 66, 106, 208, 69, 244, 117, 147, 2, 37, 207, 199, 184, 96, 102, 44, 70, 212, 87, 143, 253, 0, 166, 59, 41, 115, 217, 80, 165, 87, 38, 5, 9, 184, 202, 68, 67, 176, 4, 87, 254, 166, 227, 88, 124, 238, 249, 75, 114, 205, 148, 149, 45, 78, 193, 134, 64, 189, 168, 76, 170, 76, 176, 72, 148, 77, 215, 159, 146, 55, 189, 213, 85, 253, 135, 200, 59, 247, 79, 37, 22, 200, 32, 110, 53, 123, 54, 39, 9, 178, 231, 238, 95, 25, 211, 143, 87, 220, 88, 138, 209, 13, 227, 72, 58, 102, 164, 136, 241, 14, 14, 45, 32, 77, 44, 244, 162, 239, 150, 248, 181, 138, 251, 116, 245, 205, 137, 78, 34, 34, 10, 6, 59, 4, 197, 2, 153, 251]
TOC |
Base64url encode the JWE Encrypted Key to produce the Encoded JWE Encrypted Key. This result (with line breaks for display purposes only) is:
IPI_z172hSWHMFgED8EG9DM6hIXU_6NaO1DImCn0vNeuoBq847Sl6qw_GHSYHJUQ XtXJq7S_CxWVrI82wjrOyaQca5tLZRZc45BfKHeqByThKI261QevEK56SyAwwXfK KZjSvkQ5dwTFSgfy76rMSUvVynHYEhdCatBF9HWTAiXPx7hgZixG1FeP_QCmOylz 2VClVyYFCbjKREOwBFf-puNYfO75S3LNlJUtTsGGQL2oTKpMsEiUTdefkje91VX9 h8g7908lFsggbjV7NicJsufuXxnTj1fcWIrRDeNIOmakiPEODi0gTSz0ou-W-LWK -3T1zYlOIiIKBjsExQKZ-w
TOC |
Use the Concat key derivation function to derive Content Encryption Key (CEK) and Content Integrity Key (CIK) values from the CMK. The details of this derivation are shown in Appendix A.3 (Example Key Derivation with Outputs <= Hash Size). The resulting CEK value is:
[249, 255, 87, 218, 224, 223, 221, 53, 204, 121, 166, 130, 195, 184, 50, 69]
The resulting CIK value is:
[218, 209, 130, 50, 169, 45, 70, 214, 29, 187, 123, 20, 3, 158, 111, 122, 182, 94, 57, 133, 245, 76, 97, 44, 193, 80, 81, 246, 115, 177, 225, 159]
TOC |
Encrypt the Plaintext with AES CBC using the CEK and IV to produce the Ciphertext. The resulting Ciphertext is:
[253, 159, 221, 142, 82, 40, 11, 131, 3, 72, 34, 162, 173, 229, 146, 217, 183, 173, 139, 132, 58, 137, 33, 182, 82, 49, 110, 141, 11, 221, 207, 239, 207, 65, 213, 28, 20, 217, 14, 186, 87, 160, 15, 160, 96, 142, 7, 69, 46, 55, 129, 224, 113, 206, 59, 181, 7, 188, 255, 15, 16, 59, 180, 107, 75, 0, 217, 175, 254, 8, 141, 48, 217, 132, 16, 217, 4, 30, 223, 147]
TOC |
Base64url encode the resulting Ciphertext to create the Encoded JWE Ciphertext. This result (with line breaks for display purposes only) is:
_Z_djlIoC4MDSCKireWS2beti4Q6iSG2UjFujQvdz-_PQdUcFNkOulegD6BgjgdF LjeB4HHOO7UHvP8PEDu0a0sA2a_-CI0w2YQQ2QQe35M
TOC |
Concatenate the Encoded JWE Header value, a period character ('.'), the Encoded JWE Encrypted Key, a second period character, and the Encoded JWE Ciphertext to create the value to integrity protect. This result (with line breaks for display purposes only) is:
eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDIiwiaW50IjoiSFMyNTYiLCJp diI6IkF4WThEQ3REYUdsc2JHbGpiM1JvWlEifQ. IPI_z172hSWHMFgED8EG9DM6hIXU_6NaO1DImCn0vNeuoBq847Sl6qw_GHSYHJUQ XtXJq7S_CxWVrI82wjrOyaQca5tLZRZc45BfKHeqByThKI261QevEK56SyAwwXfK KZjSvkQ5dwTFSgfy76rMSUvVynHYEhdCatBF9HWTAiXPx7hgZixG1FeP_QCmOylz 2VClVyYFCbjKREOwBFf-puNYfO75S3LNlJUtTsGGQL2oTKpMsEiUTdefkje91VX9 h8g7908lFsggbjV7NicJsufuXxnTj1fcWIrRDeNIOmakiPEODi0gTSz0ou-W-LWK -3T1zYlOIiIKBjsExQKZ-w. _Z_djlIoC4MDSCKireWS2beti4Q6iSG2UjFujQvdz-_PQdUcFNkOulegD6BgjgdF LjeB4HHOO7UHvP8PEDu0a0sA2a_-CI0w2YQQ2QQe35M
The representation of this value is:
[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69, 120, 88, 122, 85, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 73, 105, 119, 105, 97, 87, 53, 48, 73, 106, 111, 105, 83, 70, 77, 121, 78, 84, 89, 105, 76, 67, 74, 112, 100, 105, 73, 54, 73, 107, 70, 52, 87, 84, 104, 69, 81, 51, 82, 69, 89, 85, 100, 115, 99, 50, 74, 72, 98, 71, 112, 105, 77, 49, 74, 118, 87, 108, 69, 105, 102, 81, 46, 73, 80, 73, 95, 122, 49, 55, 50, 104, 83, 87, 72, 77, 70, 103, 69, 68, 56, 69, 71, 57, 68, 77, 54, 104, 73, 88, 85, 95, 54, 78, 97, 79, 49, 68, 73, 109, 67, 110, 48, 118, 78, 101, 117, 111, 66, 113, 56, 52, 55, 83, 108, 54, 113, 119, 95, 71, 72, 83, 89, 72, 74, 85, 81, 88, 116, 88, 74, 113, 55, 83, 95, 67, 120, 87, 86, 114, 73, 56, 50, 119, 106, 114, 79, 121, 97, 81, 99, 97, 53, 116, 76, 90, 82, 90, 99, 52, 53, 66, 102, 75, 72, 101, 113, 66, 121, 84, 104, 75, 73, 50, 54, 49, 81, 101, 118, 69, 75, 53, 54, 83, 121, 65, 119, 119, 88, 102, 75, 75, 90, 106, 83, 118, 107, 81, 53, 100, 119, 84, 70, 83, 103, 102, 121, 55, 54, 114, 77, 83, 85, 118, 86, 121, 110, 72, 89, 69, 104, 100, 67, 97, 116, 66, 70, 57, 72, 87, 84, 65, 105, 88, 80, 120, 55, 104, 103, 90, 105, 120, 71, 49, 70, 101, 80, 95, 81, 67, 109, 79, 121, 108, 122, 50, 86, 67, 108, 86, 121, 89, 70, 67, 98, 106, 75, 82, 69, 79, 119, 66, 70, 102, 45, 112, 117, 78, 89, 102, 79, 55, 53, 83, 51, 76, 78, 108, 74, 85, 116, 84, 115, 71, 71, 81, 76, 50, 111, 84, 75, 112, 77, 115, 69, 105, 85, 84, 100, 101, 102, 107, 106, 101, 57, 49, 86, 88, 57, 104, 56, 103, 55, 57, 48, 56, 108, 70, 115, 103, 103, 98, 106, 86, 55, 78, 105, 99, 74, 115, 117, 102, 117, 88, 120, 110, 84, 106, 49, 102, 99, 87, 73, 114, 82, 68, 101, 78, 73, 79, 109, 97, 107, 105, 80, 69, 79, 68, 105, 48, 103, 84, 83, 122, 48, 111, 117, 45, 87, 45, 76, 87, 75, 45, 51, 84, 49, 122, 89, 108, 79, 73, 105, 73, 75, 66, 106, 115, 69, 120, 81, 75, 90, 45, 119, 46, 95, 90, 95, 100, 106, 108, 73, 111, 67, 52, 77, 68, 83, 67, 75, 105, 114, 101, 87, 83, 50, 98, 101, 116, 105, 52, 81, 54, 105, 83, 71, 50, 85, 106, 70, 117, 106, 81, 118, 100, 122, 45, 95, 80, 81, 100, 85, 99, 70, 78, 107, 79, 117, 108, 101, 103, 68, 54, 66, 103, 106, 103, 100, 70, 76, 106, 101, 66, 52, 72, 72, 79, 79, 55, 85, 72, 118, 80, 56, 80, 69, 68, 117, 48, 97, 48, 115, 65, 50, 97, 95, 45, 67, 73, 48, 119, 50, 89, 81, 81, 50, 81, 81, 101, 51, 53, 77]
TOC |
Compute the HMAC SHA-256 of this value using the CIK to create the JWE Integrity Value. This result is:
[115, 141, 100, 225, 62, 30, 2, 0, 130, 183, 173, 230, 241, 147, 102, 136, 232, 167, 49, 200, 133, 23, 42, 78, 22, 155, 226, 119, 184, 186, 15, 73]
TOC |
Base64url encode the resulting JWE Integrity Value to create the Encoded JWE Integrity Value. This result is:
c41k4T4eAgCCt63m8ZNmiOinMciFFypOFpvid7i6D0k
TOC |
Assemble the final representation: The Compact Serialization of this result is the concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE Ciphertext, and the Encoded JWE Integrity Value in that order, with the four strings being separated by three period ('.') characters.
The final result in this example (with line breaks for display purposes only) is:
eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDIiwiaW50IjoiSFMyNTYiLCJp diI6IkF4WThEQ3REYUdsc2JHbGpiM1JvWlEifQ. IPI_z172hSWHMFgED8EG9DM6hIXU_6NaO1DImCn0vNeuoBq847Sl6qw_GHSYHJUQ XtXJq7S_CxWVrI82wjrOyaQca5tLZRZc45BfKHeqByThKI261QevEK56SyAwwXfK KZjSvkQ5dwTFSgfy76rMSUvVynHYEhdCatBF9HWTAiXPx7hgZixG1FeP_QCmOylz 2VClVyYFCbjKREOwBFf-puNYfO75S3LNlJUtTsGGQL2oTKpMsEiUTdefkje91VX9 h8g7908lFsggbjV7NicJsufuXxnTj1fcWIrRDeNIOmakiPEODi0gTSz0ou-W-LWK -3T1zYlOIiIKBjsExQKZ-w. _Z_djlIoC4MDSCKireWS2beti4Q6iSG2UjFujQvdz-_PQdUcFNkOulegD6BgjgdF LjeB4HHOO7UHvP8PEDu0a0sA2a_-CI0w2YQQ2QQe35M. c41k4T4eAgCCt63m8ZNmiOinMciFFypOFpvid7i6D0k
TOC |
This example illustrates the process of creating a JWE with a non-AEAD algorithm. These results can be used to validate JWE decryption implementations for these algorithms. Since all the algorithms used in this example produce deterministic results, the results above should be repeatable.
TOC |
This example uses the Concat KDF to derive the Content Encryption Key (CEK) and Content Integrity Key (CIK) from the Content Master Key (CMK) in the manner described in Section 4.12 of [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.). In this example, a 256 bit CMK is used to derive a 128 bit CEK and a 256 bit CIK.
The CMK value is:
[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]
TOC |
When deriving the CEK from the CMK, the ASCII label "Encryption" ([69, 110, 99, 114, 121, 112, 116, 105, 111, 110]) is used. The input to the first hash round is the concatenation of the big endian number 1 ([0, 0, 0, 1]), the CMK, and the label. Thus the round 1 hash input is:
[0, 0, 0, 1, 4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207, 69, 110, 99, 114, 121, 112, 116, 105, 111, 110]
The SHA-256 hash of this value, which is the round 1 hash output, is:
[249, 255, 87, 218, 224, 223, 221, 53, 204, 121, 166, 130, 195, 184, 50, 69, 11, 237, 202, 71, 10, 96, 59, 199, 140, 88, 126, 147, 146, 113, 222, 41]
Given that 128 bits are needed for the CEK and the hash has produced 256 bits, the CEK value is the first 128 bits of that value:
[249, 255, 87, 218, 224, 223, 221, 53, 204, 121, 166, 130, 195, 184, 50, 69]
TOC |
When deriving the CIK from the CMK, the ASCII label "Integrity" ([73, 110, 116, 101, 103, 114, 105, 116, 121]) is used. The input to the first hash round is the concatenation of the big endian number 1 ([0, 0, 0, 1]), the CMK, and the label. Thus the round 1 hash input is:
[0, 0, 0, 1, 4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207, 73, 110, 116, 101, 103, 114, 105, 116, 121]
The SHA-256 hash of this value, which is the round 1 hash output, is:
[218, 209, 130, 50, 169, 45, 70, 214, 29, 187, 123, 20, 3, 158, 111, 122, 182, 94, 57, 133, 245, 76, 97, 44, 193, 80, 81, 246, 115, 177, 225, 159]
Given that 256 bits are needed for the CIK and the hash has produced 256 bits, the CIK value is that same value:
[218, 209, 130, 50, 169, 45, 70, 214, 29, 187, 123, 20, 3, 158, 111, 122, 182, 94, 57, 133, 245, 76, 97, 44, 193, 80, 81, 246, 115, 177, 225, 159]
TOC |
This example uses the Concat KDF to derive the Content Encryption Key (CEK) and Content Integrity Key (CIK) from the Content Master Key (CMK) in the manner described in Section 4.12 of [JWA] (Jones, M., “JSON Web Algorithms (JWA),” July 2012.). In this example, a 512 bit CMK is used to derive a 256 bit CEK and a 512 bit CIK.
The CMK value is:
[148, 116, 199, 126, 2, 117, 233, 76, 150, 149, 89, 193, 61, 34, 239, 226, 109, 71, 59, 160, 192, 140, 150, 235, 106, 204, 49, 176, 68, 119, 13, 34, 49, 19, 41, 69, 5, 20, 252, 145, 104, 129, 137, 138, 67, 23, 153, 83, 81, 234, 82, 247, 48, 211, 41, 130, 35, 124, 45, 156, 249, 7, 225, 168]
TOC |
When deriving the CEK from the CMK, the ASCII label "Encryption" ([69, 110, 99, 114, 121, 112, 116, 105, 111, 110]) is used. The input to the first hash round is the concatenation of the big endian number 1 ([0, 0, 0, 1]), the CMK, and the label. Thus the round 1 hash input is:
[0, 0, 0, 1, 148, 116, 199, 126, 2, 117, 233, 76, 150, 149, 89, 193, 61, 34, 239, 226, 109, 71, 59, 160, 192, 140, 150, 235, 106, 204, 49, 176, 68, 119, 13, 34, 49, 19, 41, 69, 5, 20, 252, 145, 104, 129, 137, 138, 67, 23, 153, 83, 81, 234, 82, 247, 48, 211, 41, 130, 35, 124, 45, 156, 249, 7, 225, 168, 69, 110, 99, 114, 121, 112, 116, 105, 111, 110]
The SHA-256 hash of this value, which is the round 1 hash output, is:
[137, 5, 92, 9, 17, 47, 17, 86, 253, 235, 34, 247, 121, 78, 11, 144, 10, 172, 38, 247, 108, 243, 201, 237, 95, 80, 49, 150, 116, 240, 159, 64]
Given that 256 bits are needed for the CEK and the hash has produced 256 bits, the CEK value is that same value:
[137, 5, 92, 9, 17, 47, 17, 86, 253, 235, 34, 247, 121, 78, 11, 144, 10, 172, 38, 247, 108, 243, 201, 237, 95, 80, 49, 150, 116, 240, 159, 64]
TOC |
When deriving the CIK from the CMK, the ASCII label "Integrity" ([73, 110, 116, 101, 103, 114, 105, 116, 121]) is used. The input to the first hash round is the concatenation of the big endian number 1 ([0, 0, 0, 1]), the CMK, and the label. Thus the round 1 hash input is:
[0, 0, 0, 1, 148, 116, 199, 126, 2, 117, 233, 76, 150, 149, 89, 193, 61, 34, 239, 226, 109, 71, 59, 160, 192, 140, 150, 235, 106, 204, 49, 176, 68, 119, 13, 34, 49, 19, 41, 69, 5, 20, 252, 145, 104, 129, 137, 138, 67, 23, 153, 83, 81, 234, 82, 247, 48, 211, 41, 130, 35, 124, 45, 156, 249, 7, 225, 168, 73, 110, 116, 101, 103, 114, 105, 116, 121]
The SHA-256 hash of this value, which is the round 1 hash output, is:
[11, 179, 132, 177, 171, 24, 126, 19, 113, 1, 200, 102, 100, 74, 88, 149, 31, 41, 71, 57, 51, 179, 106, 242, 113, 211, 56, 56, 37, 198, 57, 17]
Given that 512 bits are needed for the CIK and the hash has produced only 256 bits, another round is needed. The input to the second hash round is the concatenation of the big endian number 2 ([0, 0, 0, 2]), the CMK, and the label. Thus the round 2 hash input is:
[0, 0, 0, 2, 148, 116, 199, 126, 2, 117, 233, 76, 150, 149, 89, 193, 61, 34, 239, 226, 109, 71, 59, 160, 192, 140, 150, 235, 106, 204, 49, 176, 68, 119, 13, 34, 49, 19, 41, 69, 5, 20, 252, 145, 104, 129, 137, 138, 67, 23, 153, 83, 81, 234, 82, 247, 48, 211, 41, 130, 35, 124, 45, 156, 249, 7, 225, 168, 73, 110, 116, 101, 103, 114, 105, 116, 121]
The SHA-256 hash of this value, which is the round 2 hash output, is:
[149, 209, 221, 113, 40, 191, 95, 252, 142, 254, 141, 230, 39, 113, 139, 84, 44, 156, 247, 47, 223, 101, 229, 180, 82, 231, 38, 96, 170, 119, 236, 81]
Given that 512 bits are needed for the CIK and the two rounds have collectively produced 512 bits of output, the CIK is the concatenation of the round 1 and round 2 hash outputs, which is:
[11, 179, 132, 177, 171, 24, 126, 19, 113, 1, 200, 102, 100, 74, 88, 149, 31, 41, 71, 57, 51, 179, 106, 242, 113, 211, 56, 56, 37, 198, 57, 17, 149, 209, 221, 113, 40, 191, 95, 252, 142, 254, 141, 230, 39, 113, 139, 84, 44, 156, 247, 47, 223, 101, 229, 180, 82, 231, 38, 96, 170, 119, 236, 81]
TOC |
Solutions for encrypting JSON content were also explored by JSON Simple Encryption (Bradley, J. and N. Sakimura (editor), “JSON Simple Encryption,” September 2010.) [JSE] and JavaScript Message Security Format (Rescorla, E. and J. Hildebrand, “JavaScript Message Security Format,” March 2011.) [I‑D.rescorla‑jsms], both of which significantly influenced this draft. This draft attempts to explicitly reuse as many of the relevant concepts from XML Encryption 1.1 (Eastlake, D., Reagle, J., Hirsch, F., and T. Roessler, “XML Encryption Syntax and Processing Version 1.1,” March 2012.) [W3C.CR‑xmlenc‑core1‑20120313] and RFC 5652 (Housley, R., “Cryptographic Message Syntax (CMS),” September 2009.) [RFC5652] as possible, while utilizing simple compact JSON-based data structures.
Special thanks are due to John Bradley and Nat Sakimura for the discussions that helped inform the content of this specification and to Eric Rescorla and Joe Hildebrand for allowing the reuse of text from [I‑D.rescorla‑jsms] (Rescorla, E. and J. Hildebrand, “JavaScript Message Security Format,” March 2011.) in this document.
Thanks to Axel Nennker, Emmanuel Raviart, Brian Campbell, and Edmund Jay for validating the examples in this specification.
TOC |
[[ to be removed by the RFC editor before publication as an RFC ]]
-05
-04
-03
-02
-01
-00
TOC |
Michael B. Jones | |
Microsoft | |
Email: | mbj@microsoft.com |
URI: | http://self-issued.info/ |
Eric Rescorla | |
RTFM, Inc. | |
Email: | ekr@rtfm.com |
Joe Hildebrand | |
Cisco Systems, Inc. | |
Email: | jhildebr@cisco.com |